Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's tackle the question step by step.
### Part (a)
#### Given:
Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
#### Required:
Set-builder form.
To express this set in set-builder form, let's analyze its elements. The set contains the integers [tex]\(-1, 0, 1, 2,\)[/tex] and [tex]\(3\)[/tex].
From this, we can observe that it contains all the integers [tex]\(x\)[/tex] from [tex]\(-1\)[/tex] to [tex]\(3\)[/tex], inclusive. Therefore, the set-builder notation can be written as:
[tex]\[ \{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \} \][/tex]
### Part (b)
#### Given:
Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
#### Required:
Roster form.
To convert from set-builder form to roster form, we'll list at least the first four elements to illustrate the pattern. Starting from [tex]\(-1\)[/tex], the next integers would be [tex]\(0\)[/tex], [tex]\(1\)[/tex], [tex]\(2\)[/tex], and so on.
So, the roster form representing the set including at least four elements to show the pattern would be:
[tex]\[ \{ -1, 0, 1, 2, 3, \ldots \} \][/tex]
This indicates that [tex]\(y\)[/tex] continues indefinitely in the positive direction, starting from [tex]\(-1\)[/tex].
### Final Answer:
(a) Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
Set-builder form: [tex]\(\{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \}\)[/tex]
(b) Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
Roster form: [tex]\(\{ -1, 0, 1, 2, 3, \ldots \}\)[/tex]
### Part (a)
#### Given:
Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
#### Required:
Set-builder form.
To express this set in set-builder form, let's analyze its elements. The set contains the integers [tex]\(-1, 0, 1, 2,\)[/tex] and [tex]\(3\)[/tex].
From this, we can observe that it contains all the integers [tex]\(x\)[/tex] from [tex]\(-1\)[/tex] to [tex]\(3\)[/tex], inclusive. Therefore, the set-builder notation can be written as:
[tex]\[ \{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \} \][/tex]
### Part (b)
#### Given:
Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
#### Required:
Roster form.
To convert from set-builder form to roster form, we'll list at least the first four elements to illustrate the pattern. Starting from [tex]\(-1\)[/tex], the next integers would be [tex]\(0\)[/tex], [tex]\(1\)[/tex], [tex]\(2\)[/tex], and so on.
So, the roster form representing the set including at least four elements to show the pattern would be:
[tex]\[ \{ -1, 0, 1, 2, 3, \ldots \} \][/tex]
This indicates that [tex]\(y\)[/tex] continues indefinitely in the positive direction, starting from [tex]\(-1\)[/tex].
### Final Answer:
(a) Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
Set-builder form: [tex]\(\{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \}\)[/tex]
(b) Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
Roster form: [tex]\(\{ -1, 0, 1, 2, 3, \ldots \}\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.