At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the point [tex]\((3, -2)\)[/tex] lies within the solution set of the given system of linear inequalities:
1. First inequality: [tex]\( y < -3 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \\ -2 < -3 \][/tex]
- This statement is false because [tex]\(-2\)[/tex] is not less than [tex]\(-3\)[/tex].
2. Second inequality: [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \quad \text{and} \quad x = 3 \\ -2 \leq \frac{2}{3} \cdot 3 - 4 \][/tex]
- Calculating the right-hand side:
[tex]\[ \frac{2}{3} \cdot 3 = 2 \\ 2 - 4 = -2 \][/tex]
- Therefore, the inequality becomes:
[tex]\[ -2 \leq -2 \][/tex]
- This statement is true because [tex]\(-2\)[/tex] is equal to [tex]\(-2\)[/tex].
Combining the results, the point [tex]\((3, -2)\)[/tex] does not satisfy the first inequality [tex]\( y < -3 \)[/tex] but does satisfy the second inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex].
Therefore, the point [tex]\((3, -2)\)[/tex] lies in the solution set of the inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex] but not in the solution set of the inequality [tex]\( y < -3 \)[/tex].
1. First inequality: [tex]\( y < -3 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \\ -2 < -3 \][/tex]
- This statement is false because [tex]\(-2\)[/tex] is not less than [tex]\(-3\)[/tex].
2. Second inequality: [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \quad \text{and} \quad x = 3 \\ -2 \leq \frac{2}{3} \cdot 3 - 4 \][/tex]
- Calculating the right-hand side:
[tex]\[ \frac{2}{3} \cdot 3 = 2 \\ 2 - 4 = -2 \][/tex]
- Therefore, the inequality becomes:
[tex]\[ -2 \leq -2 \][/tex]
- This statement is true because [tex]\(-2\)[/tex] is equal to [tex]\(-2\)[/tex].
Combining the results, the point [tex]\((3, -2)\)[/tex] does not satisfy the first inequality [tex]\( y < -3 \)[/tex] but does satisfy the second inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex].
Therefore, the point [tex]\((3, -2)\)[/tex] lies in the solution set of the inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex] but not in the solution set of the inequality [tex]\( y < -3 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.