Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, we need to use Gay-Lussac's Law, which states that the pressure of a gas is directly proportional to its absolute temperature, assuming constant volume. The mathematical representation of Gay-Lussac's Law is:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( T_2 \)[/tex] is the final temperature.
We need to perform the following steps:
1. Convert the temperatures from Celsius to Kelvin:
[tex]\[ T(\text{Kelvin}) = T(\text{Celsius}) + 273.15 \][/tex]
2. Set up the equation using the given values:
- [tex]\( P_1 = 380 \)[/tex] mmHg
- [tex]\( T_1 = 127^\circ\text{C} + 273.15 = 400.15 \)[/tex] K
- [tex]\( T_2 = 27^\circ\text{C} + 273.15 = 300.15 \)[/tex] K
3. Solve for the final pressure [tex]\( P_2 \)[/tex]:
[tex]\[ \frac{P_2}{T_2} = \frac{P_1}{T_1} \][/tex]
Rearranging for [tex]\( P_2 \)[/tex] gives:
[tex]\[ P_2 = P_1 \cdot \frac{T_2}{T_1} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ P_2 = 380 \, \text{mmHg} \cdot \frac{300.15 \, \text{K}}{400.15 \, \text{K}} \][/tex]
5. Compute the final pressure:
[tex]\[ P_2 \approx 285.04 \, \text{mmHg} \][/tex]
Therefore, the pressure of the methane gas when it is cooled to 27°C will be approximately 285 mmHg.
The correct answer is:
B. 285 mmHg
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( T_1 \)[/tex] is the initial temperature,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( T_2 \)[/tex] is the final temperature.
We need to perform the following steps:
1. Convert the temperatures from Celsius to Kelvin:
[tex]\[ T(\text{Kelvin}) = T(\text{Celsius}) + 273.15 \][/tex]
2. Set up the equation using the given values:
- [tex]\( P_1 = 380 \)[/tex] mmHg
- [tex]\( T_1 = 127^\circ\text{C} + 273.15 = 400.15 \)[/tex] K
- [tex]\( T_2 = 27^\circ\text{C} + 273.15 = 300.15 \)[/tex] K
3. Solve for the final pressure [tex]\( P_2 \)[/tex]:
[tex]\[ \frac{P_2}{T_2} = \frac{P_1}{T_1} \][/tex]
Rearranging for [tex]\( P_2 \)[/tex] gives:
[tex]\[ P_2 = P_1 \cdot \frac{T_2}{T_1} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ P_2 = 380 \, \text{mmHg} \cdot \frac{300.15 \, \text{K}}{400.15 \, \text{K}} \][/tex]
5. Compute the final pressure:
[tex]\[ P_2 \approx 285.04 \, \text{mmHg} \][/tex]
Therefore, the pressure of the methane gas when it is cooled to 27°C will be approximately 285 mmHg.
The correct answer is:
B. 285 mmHg
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.