At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To graph the equation by plotting three points, we'll first rearrange the given equation into a more familiar form, which is the slope-intercept form [tex]\(y = mx + b\)[/tex]. This will help us easily find points on the line.
Given equation:
[tex]\[ -4y = -5x - 18 \][/tex]
1. Divide both sides of the equation by -4 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-5}{-4}x + \frac{-18}{-4} \][/tex]
2. Simplify the fractions:
[tex]\[ y = \frac{5}{4}x + 4.5 \][/tex]
Now that we have the equation in the form [tex]\(y = mx + b\)[/tex], let's find three points that lie on this line. We will choose three different values for [tex]\(x\)[/tex] and calculate the corresponding [tex]\(y\)[/tex] values.
Let's choose [tex]\(x = -4\)[/tex], [tex]\(x = 0\)[/tex], and [tex]\(x = 4\)[/tex].
### For [tex]\(x = -4\)[/tex]:
[tex]\[ y = \frac{5}{4}(-4) + 4.5 \][/tex]
[tex]\[ y = -5 + 4.5 \][/tex]
[tex]\[ y = -0.5 \][/tex]
So, one point is [tex]\((-4, -0.5)\)[/tex].
### For [tex]\(x = 0\)[/tex]:
[tex]\[ y = \frac{5}{4}(0) + 4.5 \][/tex]
[tex]\[ y = 0 + 4.5 \][/tex]
[tex]\[ y = 4.5 \][/tex]
So, another point is [tex]\((0, 4.5)\)[/tex].
### For [tex]\(x = 4\)[/tex]:
[tex]\[ y = \frac{5}{4}(4) + 4.5 \][/tex]
[tex]\[ y = 5 + 4.5 \][/tex]
[tex]\[ y = 9.5 \][/tex]
So, the third point is [tex]\((4, 9.5)\)[/tex].
In summary, the three points we have are:
- [tex]\((-4, -0.5)\)[/tex]
- [tex]\((0, 4.5)\)[/tex]
- [tex]\((4, 9.5)\)[/tex]
Plot these points on the coordinate plane. Once the points [tex]\((-4, -0.5)\)[/tex], [tex]\((0, 4.5)\)[/tex], and [tex]\((4, 9.5)\)[/tex] are plotted, connect them with a straight line. This line represents the graph of the equation [tex]\( -4y = -5x - 18 \)[/tex].
Click "Done" once you have plotted all points and the line should appear correctly on your graph.
Given equation:
[tex]\[ -4y = -5x - 18 \][/tex]
1. Divide both sides of the equation by -4 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-5}{-4}x + \frac{-18}{-4} \][/tex]
2. Simplify the fractions:
[tex]\[ y = \frac{5}{4}x + 4.5 \][/tex]
Now that we have the equation in the form [tex]\(y = mx + b\)[/tex], let's find three points that lie on this line. We will choose three different values for [tex]\(x\)[/tex] and calculate the corresponding [tex]\(y\)[/tex] values.
Let's choose [tex]\(x = -4\)[/tex], [tex]\(x = 0\)[/tex], and [tex]\(x = 4\)[/tex].
### For [tex]\(x = -4\)[/tex]:
[tex]\[ y = \frac{5}{4}(-4) + 4.5 \][/tex]
[tex]\[ y = -5 + 4.5 \][/tex]
[tex]\[ y = -0.5 \][/tex]
So, one point is [tex]\((-4, -0.5)\)[/tex].
### For [tex]\(x = 0\)[/tex]:
[tex]\[ y = \frac{5}{4}(0) + 4.5 \][/tex]
[tex]\[ y = 0 + 4.5 \][/tex]
[tex]\[ y = 4.5 \][/tex]
So, another point is [tex]\((0, 4.5)\)[/tex].
### For [tex]\(x = 4\)[/tex]:
[tex]\[ y = \frac{5}{4}(4) + 4.5 \][/tex]
[tex]\[ y = 5 + 4.5 \][/tex]
[tex]\[ y = 9.5 \][/tex]
So, the third point is [tex]\((4, 9.5)\)[/tex].
In summary, the three points we have are:
- [tex]\((-4, -0.5)\)[/tex]
- [tex]\((0, 4.5)\)[/tex]
- [tex]\((4, 9.5)\)[/tex]
Plot these points on the coordinate plane. Once the points [tex]\((-4, -0.5)\)[/tex], [tex]\((0, 4.5)\)[/tex], and [tex]\((4, 9.5)\)[/tex] are plotted, connect them with a straight line. This line represents the graph of the equation [tex]\( -4y = -5x - 18 \)[/tex].
Click "Done" once you have plotted all points and the line should appear correctly on your graph.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.