Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's break down the transformations applied to the function [tex]\( f(x) = -2(x - 1)^2 + 3 \)[/tex]:
1. Horizontal Shift:
- The term [tex]\( (x - 1) \)[/tex] inside the squared term indicates a horizontal shift.
- Specifically, [tex]\( (x - 1) \)[/tex] shifts the graph of the basic [tex]\( x^2 \)[/tex] function to the right by 1 unit.
2. Reflection and Vertical Stretch:
- The coefficient [tex]\(-2\)[/tex] outside the squared term affects the graph in two ways:
- Reflection: The negative sign in [tex]\(-2\)[/tex] reflects the graph over the x-axis.
- Vertical Stretch: The factor 2 stretches the graph vertically by a factor of 2.
3. Vertical Shift:
- The constant term [tex]\( +3 \)[/tex] at the end shifts the graph vertically.
- Specifically, the [tex]\( +3 \)[/tex] shifts the graph upwards by 3 units.
To summarize, the transformations applied to the function [tex]\( f(x) = -2(x - 1)^2 + 3 \)[/tex] are:
1. A horizontal shift to the right by 1 unit.
2. A reflection over the x-axis and a vertical stretch by a factor of 2.
3. A vertical shift upwards by 3 units.
1. Horizontal Shift:
- The term [tex]\( (x - 1) \)[/tex] inside the squared term indicates a horizontal shift.
- Specifically, [tex]\( (x - 1) \)[/tex] shifts the graph of the basic [tex]\( x^2 \)[/tex] function to the right by 1 unit.
2. Reflection and Vertical Stretch:
- The coefficient [tex]\(-2\)[/tex] outside the squared term affects the graph in two ways:
- Reflection: The negative sign in [tex]\(-2\)[/tex] reflects the graph over the x-axis.
- Vertical Stretch: The factor 2 stretches the graph vertically by a factor of 2.
3. Vertical Shift:
- The constant term [tex]\( +3 \)[/tex] at the end shifts the graph vertically.
- Specifically, the [tex]\( +3 \)[/tex] shifts the graph upwards by 3 units.
To summarize, the transformations applied to the function [tex]\( f(x) = -2(x - 1)^2 + 3 \)[/tex] are:
1. A horizontal shift to the right by 1 unit.
2. A reflection over the x-axis and a vertical stretch by a factor of 2.
3. A vertical shift upwards by 3 units.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.