Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer: 4 zeros
Step-by-step explanation:
If you want to use the Rational Zeros Theorem, as instructed, you need to use synthetic division to find zeros until you get a quadratic remainder.
P: ±1, ±2, ±3, ±6 (all prime factors of constant term)
Q: ±1, ±7 (all prime factors of the leading coefficient)
P/Q: ±1, ±2, ±3, ±6, ±1/7, ±2/7, ±3/7, ±6/7 (all possible values of P/Q)
Now, start testing your values of P/Q in your polynomial:
f(x)=7x4-9x3-41x2+13x+6
You can tell f(1) and f(-1) are not zeros since they're not = 0Now try f(2) and f(-2):
f(2)=7(16)-9(8)-41(4)+13(2)+6
112-72-164+26+6 ≠ 0
f(-2)=7(16)-9(-8)-41(4)+13(-2)+6
112+72-164-26+6 = 0 OK!! There is a zero at x=-2
This means (x+2) is a factor of the polynomial.
Now, do synthetic division to find the polynomial that results from
(7x4-9x3-41x2+13x+6)÷(x+2):
-2⊥ 7 -9 -41 13 6
-14 46 -10 -6
7 -23 5 3 0 The remainder is 0, as expected
The quotient is a polynomial of degree 3:
7x3-23x2+5x+3
Now, continue testing the P/Q values with this new polynomial. Try f(3):
f(3)=7(27)-23(9)+5(3)+3
189-207+15+3 = 0 OK!! we found another zero at x=3
Now, another synthetic division:
3⊥ 7 -23 5 3
21 -6 -3_
7 -2 -1 0
The quotient is a quadratic polynomial:
7x2-2x-1 This is not factorable, you need to apply the quadratic formula to find the 3rd and 4th zeros:
x= (1±2√2)÷7
The polynomial has 4 zeros at x=-2, 3, (1±2√2)÷7
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.