Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What is the maximum value of [tex]$P=4x+2y$[/tex] given the constraints on [tex]$x$[/tex] and [tex][tex]$y$[/tex][/tex] listed below?
[tex]\[
\begin{array}{l}
x + 2y \leq 10 \\
y \leq 2 \\
x \geq 0 \\
y \geq 0
\end{array}
\][/tex]
A. 10
B. 20
C. 24
D. 40


Sagot :

To find the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints:

[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]

we need to solve this as a linear programming problem. Let’s follow these steps:

1. Identify the objective function and constraints:
- Objective function: [tex]\(P = 4x + 2y\)[/tex]
- Constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]

2. Graph the constraints:
- Plot the line [tex]\(x + 2y = 10\)[/tex]. This will be a boundary line.
- Plot the horizontal line [tex]\(y = 2\)[/tex].
- Add the non-negativity constraints [tex]\(x \geq 0\)[/tex] and [tex]\(y \geq 0\)[/tex].

3. Determine the feasible region:
- The feasible region is the area where all constraints overlap and it lies in the first quadrant (both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are non-negative).

4. Identify the corner points of the feasible region:
- The boundary line [tex]\(x + 2y = 10\)[/tex] intersects the [tex]\(y\)[/tex]-axis at [tex]\( (0, 5) \)[/tex].
- The line [tex]\(y = 2\)[/tex] intersects the [tex]\(x + 2y = 10\)[/tex] line at [tex]\(x = 10 - 2y \Rightarrow x = 10 - 2(2) = 6\)[/tex], giving us the point [tex]\((6, 2)\)[/tex].

The points to be checked are:
- Intersection of [tex]\(x + 2y = 10\)[/tex] and [tex]\(y = 2\)[/tex] [tex]\(\Rightarrow (6, 2)\)[/tex]
- [tex]\(x\)[/tex]-axis and [tex]\(x + 2y = 10\)[/tex] [tex]\(\Rightarrow (10, 0)\)[/tex]
- Intersections with the constraints of non-negativity which are [tex]\((0, 0)\)[/tex] and [tex]\((0, 5)\)[/tex].

5. Evaluate the objective function at these points:
- [tex]\(P(0, 0) = 4(0) + 2(0) = 0\)[/tex]
- [tex]\(P(6, 2) = 4(6) + 2(2) = 24 + 4 = 28\)[/tex]
- [tex]\(P(10, 0) = 4(10) + 2(0) = 40\)[/tex]
- [tex]\(P(0, 5) = 4(0) + 2(5) = 10\)[/tex]

6. Determine the maximum value:
Among these corner points, the maximum value of [tex]\(P\)[/tex] is [tex]\(40\)[/tex], which occurs at the point [tex]\((10, 0)\)[/tex].

Thus, the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints is [tex]\(\boxed{40}\)[/tex].