Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve the given system of linear equations step-by-step.
The system of equations is:
[tex]\[ \begin{array}{l} x + y = 11 \\ 5x - y = 10 \end{array} \][/tex]
### Step 1: Write the equations in standard form
Our given equations are already in standard form:
1. [tex]\(x + y = 11\)[/tex]
2. [tex]\(5x - y = 10\)[/tex]
### Step 2: Use the method of substitution or elimination
#### Using the Elimination Method:
1. Add the two equations to eliminate [tex]\(y\)[/tex]:
[tex]\[ (x + y) + (5x - y) = 11 + 10 \][/tex]
Simplifying this gives:
[tex]\[ x + y + 5x - y = 21 \][/tex]
[tex]\[ 6x = 21 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{21}{6} \][/tex]
[tex]\[ x = 3.5 \][/tex]
2. Substitute [tex]\(x = 3.5\)[/tex] back into the first equation to solve for [tex]\(y\)[/tex]:
[tex]\[ x + y = 11 \][/tex]
[tex]\[ 3.5 + y = 11 \][/tex]
Subtract 3.5 from both sides:
[tex]\[ y = 11 - 3.5 \][/tex]
[tex]\[ y = 7.5 \][/tex]
### Conclusion:
The solution to the system of equations is [tex]\(x = 3.5\)[/tex] and [tex]\(y = 7.5\)[/tex]. Thus, the point [tex]\((x, y) = (3.5, 7.5)\)[/tex] satisfies both equations.
So, the correct answer is:
[tex]\[ (3.5, 7.5) \][/tex]
The system of equations is:
[tex]\[ \begin{array}{l} x + y = 11 \\ 5x - y = 10 \end{array} \][/tex]
### Step 1: Write the equations in standard form
Our given equations are already in standard form:
1. [tex]\(x + y = 11\)[/tex]
2. [tex]\(5x - y = 10\)[/tex]
### Step 2: Use the method of substitution or elimination
#### Using the Elimination Method:
1. Add the two equations to eliminate [tex]\(y\)[/tex]:
[tex]\[ (x + y) + (5x - y) = 11 + 10 \][/tex]
Simplifying this gives:
[tex]\[ x + y + 5x - y = 21 \][/tex]
[tex]\[ 6x = 21 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{21}{6} \][/tex]
[tex]\[ x = 3.5 \][/tex]
2. Substitute [tex]\(x = 3.5\)[/tex] back into the first equation to solve for [tex]\(y\)[/tex]:
[tex]\[ x + y = 11 \][/tex]
[tex]\[ 3.5 + y = 11 \][/tex]
Subtract 3.5 from both sides:
[tex]\[ y = 11 - 3.5 \][/tex]
[tex]\[ y = 7.5 \][/tex]
### Conclusion:
The solution to the system of equations is [tex]\(x = 3.5\)[/tex] and [tex]\(y = 7.5\)[/tex]. Thus, the point [tex]\((x, y) = (3.5, 7.5)\)[/tex] satisfies both equations.
So, the correct answer is:
[tex]\[ (3.5, 7.5) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.