Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's work through the problem step-by-step.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.