Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to understand the relationship between the amount of time [tex]\( t \)[/tex] it takes to clean up the park and the number of volunteers [tex]\( v \)[/tex]. The problem states that [tex]\( t \)[/tex] varies inversely with [tex]\( v \)[/tex]. This means that when one increases, the other decreases proportionally.
The inverse variation relationship is expressed mathematically as:
[tex]\[ t \cdot v = k \][/tex]
where [tex]\( k \)[/tex] is a constant.
To determine this constant [tex]\( k \)[/tex], we use the given values: 7 volunteers ([tex]\( v = 7 \)[/tex]) and 1.5 hours ([tex]\( t = 1.5 \)[/tex]). Plugging these values into the equation gives us:
[tex]\[ k = t \cdot v = 1.5 \cdot 7 = 10.5 \][/tex]
Now, we have the constant [tex]\( k = 10.5 \)[/tex]. The equation that models this situation can now be written as:
[tex]\[ t = \frac{k}{v} \][/tex]
Substituting the value of [tex]\( k \)[/tex], we get:
[tex]\[ t = \frac{10.5}{v} \][/tex]
Thus, the equation that correctly models this situation is:
[tex]\[ \boxed{t = \frac{10.5}{v}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{B. } t = \frac{10.5}{v} \][/tex]
The inverse variation relationship is expressed mathematically as:
[tex]\[ t \cdot v = k \][/tex]
where [tex]\( k \)[/tex] is a constant.
To determine this constant [tex]\( k \)[/tex], we use the given values: 7 volunteers ([tex]\( v = 7 \)[/tex]) and 1.5 hours ([tex]\( t = 1.5 \)[/tex]). Plugging these values into the equation gives us:
[tex]\[ k = t \cdot v = 1.5 \cdot 7 = 10.5 \][/tex]
Now, we have the constant [tex]\( k = 10.5 \)[/tex]. The equation that models this situation can now be written as:
[tex]\[ t = \frac{k}{v} \][/tex]
Substituting the value of [tex]\( k \)[/tex], we get:
[tex]\[ t = \frac{10.5}{v} \][/tex]
Thus, the equation that correctly models this situation is:
[tex]\[ \boxed{t = \frac{10.5}{v}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{B. } t = \frac{10.5}{v} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.