Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve this problem step-by-step.
### (i) Calculate the angular acceleration
1. Initial Information:
- Initial speed ([tex]\(\omega_i\)[/tex]): [tex]\(1800 \, \text{rev/min}\)[/tex]
- Final speed ([tex]\(\omega_f\)[/tex]): [tex]\(1200 \, \text{rev/min}\)[/tex]
- Time ([tex]\(t\)[/tex]): [tex]\(20 \, \text{s}\)[/tex]
2. Convert speeds from revolutions per minute (rev/min) to radians per second (rad/s):
- [tex]\(1 \, \text{rev} = 2\pi \, \text{radians}\)[/tex]
- [tex]\(1 \, \text{min} = 60 \, \text{s}\)[/tex]
Therefore,
[tex]\[ \omega_i = 1800 \times \frac{2\pi}{60} \, \text{rad/s} = 1800 \times \frac{\pi}{30} \, \text{rad/s} = 60\pi \, \text{rad/s} \][/tex]
[tex]\[ \omega_f = 1200 \times \frac{2\pi}{60} \, \text{rad/s} = 1200 \times \frac{\pi}{30} \, \text{rad/s} = 40\pi \, \text{rad/s} \][/tex]
3. Calculate the angular acceleration ([tex]\(\alpha\)[/tex]):
[tex]\[ \alpha = \frac{\omega_f - \omega_i}{t} = \frac{40\pi - 60\pi}{20} = \frac{-20\pi}{20} = -\pi \, \text{rad/s}^2 \][/tex]
Hence, the angular acceleration is: [tex]\(\alpha = -\pi \, \text{rad/s}^2\)[/tex], which approximately equals [tex]\( -3.14 \, \text{rad/s}^2 \)[/tex].
### (ii) Calculate the number of revolutions made by the motor during this time
1. Use the equation for angular displacement ([tex]\(\theta\)[/tex]) during uniformly accelerated motion:
[tex]\[ \theta = \omega_i t + \frac{1}{2} \alpha t^2 \][/tex]
2. Substitute the values:
[tex]\[ \theta = 60\pi \times 20 + \frac{1}{2} \times (-\pi) \times 20^2 \][/tex]
3. Simplify the expression:
[tex]\[ \theta = 1200\pi + \frac{1}{2} \times (-\pi) \times 400 = 1200\pi - 200\pi = 1000\pi \, \text{radians} \][/tex]
4. Convert the angular displacement from radians to revolutions:
[tex]\[ 1 \, \text{rev} = 2\pi \, \text{radians} \][/tex]
[tex]\[ \text{Number of revolutions} = \frac{1000\pi}{2\pi} = 500 \, \text{revs} \][/tex]
Hence, the motor makes [tex]\(500\)[/tex] revolutions during this time.
### (iii) Calculate the additional time required to come to rest with the same rate of deceleration
1. Use the final speed ([tex]\(\omega_f\)[/tex]) for the calculation (note that here, [tex]\(\omega_f\)[/tex] for this part will be zero since the motor comes to rest):
[tex]\[ \omega_f' = 0, \, \omega_i' = 1200 \times \frac{2\pi}{60} = 40\pi \, \text{rad/s}, \, \alpha = -\pi \, \text{rad/s}^2 \][/tex]
2. Using the formula for uniform angular deceleration:
[tex]\[ \alpha = \frac{\omega_f' - \omega_i'}{t'} \][/tex]
[tex]\[ -\pi = \frac{0 - 40\pi}{t'} \][/tex]
3. Solve for [tex]\(t'\)[/tex]:
[tex]\[ -\pi t' = -40\pi \][/tex]
[tex]\[ t' = 40 \, \text{s} \][/tex]
Hence, the additional time required for the motor to come to rest is [tex]\(40 \, \text{seconds}\)[/tex].
### Summary of Answers:
(i) Angular acceleration: [tex]\(-3.1 \, \text{rad/s}^2\)[/tex].
(ii) Number of revolutions: [tex]\(500 \, \text{revs}\)[/tex].
(iii) Additional time to come to rest: [tex]\(40.0 \, \text{s}\)[/tex].
### (i) Calculate the angular acceleration
1. Initial Information:
- Initial speed ([tex]\(\omega_i\)[/tex]): [tex]\(1800 \, \text{rev/min}\)[/tex]
- Final speed ([tex]\(\omega_f\)[/tex]): [tex]\(1200 \, \text{rev/min}\)[/tex]
- Time ([tex]\(t\)[/tex]): [tex]\(20 \, \text{s}\)[/tex]
2. Convert speeds from revolutions per minute (rev/min) to radians per second (rad/s):
- [tex]\(1 \, \text{rev} = 2\pi \, \text{radians}\)[/tex]
- [tex]\(1 \, \text{min} = 60 \, \text{s}\)[/tex]
Therefore,
[tex]\[ \omega_i = 1800 \times \frac{2\pi}{60} \, \text{rad/s} = 1800 \times \frac{\pi}{30} \, \text{rad/s} = 60\pi \, \text{rad/s} \][/tex]
[tex]\[ \omega_f = 1200 \times \frac{2\pi}{60} \, \text{rad/s} = 1200 \times \frac{\pi}{30} \, \text{rad/s} = 40\pi \, \text{rad/s} \][/tex]
3. Calculate the angular acceleration ([tex]\(\alpha\)[/tex]):
[tex]\[ \alpha = \frac{\omega_f - \omega_i}{t} = \frac{40\pi - 60\pi}{20} = \frac{-20\pi}{20} = -\pi \, \text{rad/s}^2 \][/tex]
Hence, the angular acceleration is: [tex]\(\alpha = -\pi \, \text{rad/s}^2\)[/tex], which approximately equals [tex]\( -3.14 \, \text{rad/s}^2 \)[/tex].
### (ii) Calculate the number of revolutions made by the motor during this time
1. Use the equation for angular displacement ([tex]\(\theta\)[/tex]) during uniformly accelerated motion:
[tex]\[ \theta = \omega_i t + \frac{1}{2} \alpha t^2 \][/tex]
2. Substitute the values:
[tex]\[ \theta = 60\pi \times 20 + \frac{1}{2} \times (-\pi) \times 20^2 \][/tex]
3. Simplify the expression:
[tex]\[ \theta = 1200\pi + \frac{1}{2} \times (-\pi) \times 400 = 1200\pi - 200\pi = 1000\pi \, \text{radians} \][/tex]
4. Convert the angular displacement from radians to revolutions:
[tex]\[ 1 \, \text{rev} = 2\pi \, \text{radians} \][/tex]
[tex]\[ \text{Number of revolutions} = \frac{1000\pi}{2\pi} = 500 \, \text{revs} \][/tex]
Hence, the motor makes [tex]\(500\)[/tex] revolutions during this time.
### (iii) Calculate the additional time required to come to rest with the same rate of deceleration
1. Use the final speed ([tex]\(\omega_f\)[/tex]) for the calculation (note that here, [tex]\(\omega_f\)[/tex] for this part will be zero since the motor comes to rest):
[tex]\[ \omega_f' = 0, \, \omega_i' = 1200 \times \frac{2\pi}{60} = 40\pi \, \text{rad/s}, \, \alpha = -\pi \, \text{rad/s}^2 \][/tex]
2. Using the formula for uniform angular deceleration:
[tex]\[ \alpha = \frac{\omega_f' - \omega_i'}{t'} \][/tex]
[tex]\[ -\pi = \frac{0 - 40\pi}{t'} \][/tex]
3. Solve for [tex]\(t'\)[/tex]:
[tex]\[ -\pi t' = -40\pi \][/tex]
[tex]\[ t' = 40 \, \text{s} \][/tex]
Hence, the additional time required for the motor to come to rest is [tex]\(40 \, \text{seconds}\)[/tex].
### Summary of Answers:
(i) Angular acceleration: [tex]\(-3.1 \, \text{rad/s}^2\)[/tex].
(ii) Number of revolutions: [tex]\(500 \, \text{revs}\)[/tex].
(iii) Additional time to come to rest: [tex]\(40.0 \, \text{s}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.