Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Suppose that the function [tex]h[/tex] is defined, for all real numbers, as follows.

[tex]\[
h(x)=\left\{\begin{array}{ll}
-\frac{1}{4} x-1 & \text{if } x\ \textless \ -2 \\
(x-1)^2-2 & \text{if } -2 \leq x \leq 1 \\
2 & \text{if } x\ \textgreater \ 1
\end{array}\right.
\][/tex]

Find [tex]h(0)[/tex], [tex]h(1)[/tex], and [tex]h(3)[/tex].

[tex]\[
\begin{array}{l}
h(0)= \\
h(1)= \\
h(3)=
\end{array}
\][/tex]


Sagot :

To determine the values of [tex]\( h \)[/tex] at specific points, we need to evaluate the piecewise function at those points by choosing the appropriate cases.

Step-by-Step Solution:

1. Evaluate [tex]\( h(0) \)[/tex]:
- For [tex]\( x = 0 \)[/tex], we look at the piecewise function's domain definitions:
- Since [tex]\( -2 \leq 0 \leq 1 \)[/tex], use the second case: [tex]\( h(x) = (x - 1)^2 - 2 \)[/tex].
- Plug [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ h(0) = (0 - 1)^2 - 2 = (-1)^2 - 2 = 1 - 2 = -1 \][/tex]
- Therefore, [tex]\( h(0) = -1 \)[/tex].

2. Evaluate [tex]\( h(1) \)[/tex]:
- For [tex]\( x = 1 \)[/tex], again we check the domain definitions:
- Since [tex]\( -2 \leq 1 \leq 1 \)[/tex], use the second case: [tex]\( h(x) = (x - 1)^2 - 2 \)[/tex].
- Plug [tex]\( x = 1 \)[/tex] into the equation:
[tex]\[ h(1) = (1 - 1)^2 - 2 = 0^2 - 2 = 0 - 2 = -2 \][/tex]
- Therefore, [tex]\( h(1) = -2 \)[/tex].

3. Evaluate [tex]\( h(3) \)[/tex]:
- For [tex]\( x = 3 \)[/tex], check the domain definitions:
- Since [tex]\( 3 > 1 \)[/tex], use the third case: [tex]\( h(x) = 2 \)[/tex].
- Therefore, [tex]\( h(3) = 2 \)[/tex].

The final values for the function at the given points are:
[tex]\[ \begin{array}{l} h(0) = -1 \\ h(1) = -2 \\ h(3) = 2 \end{array} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.