Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the strength of the electric field of a point charge, we use the formula:
[tex]\[ E = \frac{k \cdot q}{r^2} \][/tex]
where:
- [tex]\( E \)[/tex] is the electric field strength,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the magnitude of the point charge,
- [tex]\( r \)[/tex] is the distance from the charge.
Given values:
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- [tex]\( q = 6.4 \times 10^{-19} \, \text{C} \)[/tex],
- [tex]\( r = 4.0 \times 10^{-3} \, \text{m} \)[/tex].
First, we calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (4.0 \times 10^{-3} \, \text{m})^2 \][/tex]
[tex]\[ r^2 = 16.0 \times 10^{-6} \, \text{m}^2 \][/tex]
Next, we calculate the electric field strength [tex]\( E \)[/tex] by substituting the given values into the formula:
[tex]\[ E = \frac{9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
We calculate the numerator:
[tex]\[ 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C} = 57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ E = \frac{57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the division:
[tex]\[ E = \frac{57.6 \times 10^{-10}}{16.0 \times 10^{-6}} \][/tex]
[tex]\[ E = 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thus, the electric field strength is:
[tex]\[ 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
So, the correct answer is:
[tex]\[ \text{D. } 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
[tex]\[ E = \frac{k \cdot q}{r^2} \][/tex]
where:
- [tex]\( E \)[/tex] is the electric field strength,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the magnitude of the point charge,
- [tex]\( r \)[/tex] is the distance from the charge.
Given values:
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- [tex]\( q = 6.4 \times 10^{-19} \, \text{C} \)[/tex],
- [tex]\( r = 4.0 \times 10^{-3} \, \text{m} \)[/tex].
First, we calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (4.0 \times 10^{-3} \, \text{m})^2 \][/tex]
[tex]\[ r^2 = 16.0 \times 10^{-6} \, \text{m}^2 \][/tex]
Next, we calculate the electric field strength [tex]\( E \)[/tex] by substituting the given values into the formula:
[tex]\[ E = \frac{9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
We calculate the numerator:
[tex]\[ 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C} = 57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ E = \frac{57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the division:
[tex]\[ E = \frac{57.6 \times 10^{-10}}{16.0 \times 10^{-6}} \][/tex]
[tex]\[ E = 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thus, the electric field strength is:
[tex]\[ 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
So, the correct answer is:
[tex]\[ \text{D. } 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.