Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step by step:
Part (a): Writing the Linear Equation
Given points:
- \((x_1, y_1) = (50, 27.50)\)
- \((x_2, y_2) = (400, 115.00)\)
A linear equation can be written in the form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
1. Calculate the slope \(m\):
[tex]\[ m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{(115.00 - 27.50)}{(400 - 50)} = \frac{87.50}{350} = 0.25 \][/tex]
2. Calculate the y-intercept \(b\):
Using the point \((x_1, y_1)\):
[tex]\[ b = y_1 - mx_1 \][/tex]
[tex]\[ b = 27.50 - (0.25 \times 50) = 27.50 - 12.50 = 15.00 \][/tex]
So, the linear equation is:
[tex]\[ y = 0.25x + 15.0 \][/tex]
Part (b): Finding the Number of Cups Produced for $130.00
Given the linear equation we derived:
[tex]\[ y = 0.25x + 15.0 \][/tex]
We need to find \(x\) when the cost \(y\) is $130.00:
[tex]\[ 130.00 = 0.25x + 15.0 \][/tex]
Solving for \(x\):
[tex]\[ 130.00 - 15.00 = 0.25x \][/tex]
[tex]\[ 115.00 = 0.25x \][/tex]
[tex]\[ x = \frac{115.00}{0.25} = 460 \][/tex]
Summary:
- The linear equation that expresses the cost \(y\) in terms of the number of cups of coffee \(x\) is \(y = 0.25x + 15.0\).
- If the cost of production is $130.00, the total number of cups produced is [tex]\(460\)[/tex] cups.
Part (a): Writing the Linear Equation
Given points:
- \((x_1, y_1) = (50, 27.50)\)
- \((x_2, y_2) = (400, 115.00)\)
A linear equation can be written in the form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
1. Calculate the slope \(m\):
[tex]\[ m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{(115.00 - 27.50)}{(400 - 50)} = \frac{87.50}{350} = 0.25 \][/tex]
2. Calculate the y-intercept \(b\):
Using the point \((x_1, y_1)\):
[tex]\[ b = y_1 - mx_1 \][/tex]
[tex]\[ b = 27.50 - (0.25 \times 50) = 27.50 - 12.50 = 15.00 \][/tex]
So, the linear equation is:
[tex]\[ y = 0.25x + 15.0 \][/tex]
Part (b): Finding the Number of Cups Produced for $130.00
Given the linear equation we derived:
[tex]\[ y = 0.25x + 15.0 \][/tex]
We need to find \(x\) when the cost \(y\) is $130.00:
[tex]\[ 130.00 = 0.25x + 15.0 \][/tex]
Solving for \(x\):
[tex]\[ 130.00 - 15.00 = 0.25x \][/tex]
[tex]\[ 115.00 = 0.25x \][/tex]
[tex]\[ x = \frac{115.00}{0.25} = 460 \][/tex]
Summary:
- The linear equation that expresses the cost \(y\) in terms of the number of cups of coffee \(x\) is \(y = 0.25x + 15.0\).
- If the cost of production is $130.00, the total number of cups produced is [tex]\(460\)[/tex] cups.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.