At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's study each sequence [tex]\((u_n)\)[/tex] as defined in the problem, step-by-step.
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.