Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

3. A quadratic model [tex] y = b_0 + b_1 x + b_2 x^2 [/tex] is proposed to fit the data shown.

[tex]\[
\begin{array}{c|c|c|c|c|c}
\hline
x & 1 & 2 & 3 & 4 & 5 \\
\hline
y & 5 & 20 & 45 & 75 & 110 \\
\hline
\end{array}
\][/tex]

The system of equations that yields the least squares regression coefficients is given by

[tex]\[
\left(\begin{array}{ccc}
n & \sum x & \sum x^2 \\
\sum x & \sum x^2 & \sum x^3 \\
\sum x^2 & \sum x^3 & \sum x^4
\end{array}\right)
\left(\begin{array}{l}
b_0 \\
b_1 \\
b_2
\end{array}\right) =
\left(\begin{array}{c}
\sum y \\
\sum x y \\
\sum x^2 y
\end{array}\right)
\][/tex]

In order to obtain the model, the following data transformation is proposed: [tex] v = x - 3 \quad w = \frac{y - 45}{5} [/tex]

(a) Based on the transformation, obtain the system of equations.


Sagot :

Sure, let's work through the problem step-by-step. We need to fit a quadratic model \( y = b_0 + b_1 x + b_2 x^2 \) to the given data:

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]

Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]

Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:

[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]

From the problem statement and provided results:

1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)

These values are confirmed as follows:

\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align
}

Using these sums, we can form the system of equations as follows:

[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]

Substituting the computed values gives:

[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]

So the system of equations is:

[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]

This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.