At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the final amount for a $10,000 CD at 4.50% interest for 4 years compounded quarterly, we'll use the compound interest formula:
[ A = Pleft(1 + frac{r}{n}right)^{nt} ]
Where:
- A is the amount of money accumulated after n years, including interest.
- P is the principal amount (the initial amount of money).
- r is the annual interest rate (in decimal).
- n is the number of times that interest is compounded per year.
- t is the time the money is invested for in years.
Given:
- Principal amount (P) = $10,000
- Annual interest rate (r) = 4.50% = 0.045
- Compounding frequency (n) = Quarterly
- Time (t) = 4 years
Now, let's plug these values into the formula:
[ A = 10000left(1 + frac{0.045}{4}right)^{4 times 4} ]
Let's calculate:
[ A = 10000left(1 + frac{0.045}{4}right)^{16} ]
[ A = 10000left(1 + frac{0.01125}{1}right)^{16} ]
[ A = 10000(1.01125)^{16} ]
[ A ≈ 10000(1.193435318) ]
[ A ≈ 11934.35 ]
So, at the end of 4 years compounded quarterly, the amount in the certificate of deposit would be approximately $11,934.35.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.