Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the magnitude of [tex]\( v_x \)[/tex] when the velocity [tex]\( v \)[/tex] makes an angle of [tex]\( 60^\circ \)[/tex] with the positive direction of the [tex]\( y \)[/tex]-axis, we will use trigonometric relationships.
Firstly, let's understand the given information:
- The velocity [tex]\( v \)[/tex] has a magnitude of [tex]\( 4.00 \)[/tex] meters/second.
- The angle [tex]\( \theta \)[/tex] between the velocity vector and the positive [tex]\( y \)[/tex]-axis is [tex]\( 60^\circ \)[/tex].
To find the magnitude of the [tex]\( x \)[/tex]-component of the velocity [tex]\( v_x \)[/tex], we can use the sine function. In this context, the sine function relates the angle [tex]\( \theta \)[/tex] to the ratio of the opposite side (which in this case will be [tex]\( v_x \)[/tex]) over the hypotenuse (which is [tex]\( v \)[/tex]).
The formula is:
[tex]\[ v_x = v \sin(\theta) \][/tex]
Given:
[tex]\[ v = 4.00 \, \text{meters/second} \][/tex]
[tex]\[ \theta = 60^\circ \][/tex]
We need to convert the angle from degrees to radians:
[tex]\[ \theta \text{ (in radians)} = 60^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{3} \text{ radians} \approx 1.0472 \text{ radians} \][/tex]
Next, we use the sine of [tex]\( 60^\circ \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \sqrt{3} / 2 \approx 0.866 \quad \text{(approximately taking its value)} \][/tex]
Now plug these values into the formula:
[tex]\[ v_x = 4.00 \times \sin\left(60^\circ\right) = 4.00 \times 0.866 \approx 3.46 \, \text{meters/second} \][/tex]
Therefore, the magnitude of [tex]\( v_x \)[/tex] is approximately [tex]\( 3.46 \)[/tex] meters/second, which corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{3.46 \text{ meters/second}} \][/tex]
Firstly, let's understand the given information:
- The velocity [tex]\( v \)[/tex] has a magnitude of [tex]\( 4.00 \)[/tex] meters/second.
- The angle [tex]\( \theta \)[/tex] between the velocity vector and the positive [tex]\( y \)[/tex]-axis is [tex]\( 60^\circ \)[/tex].
To find the magnitude of the [tex]\( x \)[/tex]-component of the velocity [tex]\( v_x \)[/tex], we can use the sine function. In this context, the sine function relates the angle [tex]\( \theta \)[/tex] to the ratio of the opposite side (which in this case will be [tex]\( v_x \)[/tex]) over the hypotenuse (which is [tex]\( v \)[/tex]).
The formula is:
[tex]\[ v_x = v \sin(\theta) \][/tex]
Given:
[tex]\[ v = 4.00 \, \text{meters/second} \][/tex]
[tex]\[ \theta = 60^\circ \][/tex]
We need to convert the angle from degrees to radians:
[tex]\[ \theta \text{ (in radians)} = 60^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{3} \text{ radians} \approx 1.0472 \text{ radians} \][/tex]
Next, we use the sine of [tex]\( 60^\circ \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \sqrt{3} / 2 \approx 0.866 \quad \text{(approximately taking its value)} \][/tex]
Now plug these values into the formula:
[tex]\[ v_x = 4.00 \times \sin\left(60^\circ\right) = 4.00 \times 0.866 \approx 3.46 \, \text{meters/second} \][/tex]
Therefore, the magnitude of [tex]\( v_x \)[/tex] is approximately [tex]\( 3.46 \)[/tex] meters/second, which corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{3.46 \text{ meters/second}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.