Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether the function [tex]\( F(x) = \log_5{x} \)[/tex] is decreasing, we need to understand the properties of logarithmic functions, particularly those with a base greater than 1.
1. Definition of a Logarithmic Function with Base [tex]\( 5 \)[/tex]:
The function [tex]\( F(x) = \log_5{x} \)[/tex] represents the logarithm of [tex]\( x \)[/tex] with base 5. This can be rewritten using the fact that logarithms and exponentials are inverses: [tex]\( \log_b{x} = y \)[/tex] if and only if [tex]\( b^y = x \)[/tex].
2. Behavior of Logarithms with Base Greater than 1:
A fundamental property of logarithms is that if the base [tex]\( b \)[/tex] is greater than 1, then the logarithmic function [tex]\( \log_b{x} \)[/tex] is an increasing function. That means as [tex]\( x \)[/tex] increases, [tex]\( \log_b{x} \)[/tex] also increases.
3. Visualization:
If we were to graph [tex]\( F(x) = \log_5{x} \)[/tex], we would see that it rises from [tex]\( -\infty \)[/tex] to [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] increases from 0 to [tex]\( +\infty \)[/tex]. This confirms that [tex]\( F(x) \)[/tex] is an increasing function.
4. Conclusion:
Since [tex]\( F(x) = \log_5{x} \)[/tex] is increasing for bases greater than 1, the statement that the function [tex]\( F(x) = \log_5{x} \)[/tex] is decreasing is false.
Thus, the correct answer is:
B. False
1. Definition of a Logarithmic Function with Base [tex]\( 5 \)[/tex]:
The function [tex]\( F(x) = \log_5{x} \)[/tex] represents the logarithm of [tex]\( x \)[/tex] with base 5. This can be rewritten using the fact that logarithms and exponentials are inverses: [tex]\( \log_b{x} = y \)[/tex] if and only if [tex]\( b^y = x \)[/tex].
2. Behavior of Logarithms with Base Greater than 1:
A fundamental property of logarithms is that if the base [tex]\( b \)[/tex] is greater than 1, then the logarithmic function [tex]\( \log_b{x} \)[/tex] is an increasing function. That means as [tex]\( x \)[/tex] increases, [tex]\( \log_b{x} \)[/tex] also increases.
3. Visualization:
If we were to graph [tex]\( F(x) = \log_5{x} \)[/tex], we would see that it rises from [tex]\( -\infty \)[/tex] to [tex]\( +\infty \)[/tex] as [tex]\( x \)[/tex] increases from 0 to [tex]\( +\infty \)[/tex]. This confirms that [tex]\( F(x) \)[/tex] is an increasing function.
4. Conclusion:
Since [tex]\( F(x) = \log_5{x} \)[/tex] is increasing for bases greater than 1, the statement that the function [tex]\( F(x) = \log_5{x} \)[/tex] is decreasing is false.
Thus, the correct answer is:
B. False
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.