Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we will use the given formula for kinetic energy:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the bottle,
- [tex]\( v \)[/tex] is the speed of the bottle.
We are given that the speed [tex]\( v \)[/tex] of the soda bottle is [tex]\( 4 \, \text{m/s} \)[/tex], and we need to calculate the kinetic energy for various masses.
### Step-by-Step Calculations
1. When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
2. When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
3. When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
4. When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
### Results Summary
- When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
By these calculations, we can observe how the kinetic energy of the bottle changes as its mass increases.
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the bottle,
- [tex]\( v \)[/tex] is the speed of the bottle.
We are given that the speed [tex]\( v \)[/tex] of the soda bottle is [tex]\( 4 \, \text{m/s} \)[/tex], and we need to calculate the kinetic energy for various masses.
### Step-by-Step Calculations
1. When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
2. When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
3. When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
4. When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \][/tex]
### Results Summary
- When the mass of the bottle is [tex]\( 0.125 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 1.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.250 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 2.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.375 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 3.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
- When the mass of the bottle is [tex]\( 0.500 \, \text{kg} \)[/tex], the [tex]\( KE \)[/tex] is [tex]\( 4.0 \, \text{kg} \cdot \text{m}^2 / \text{s}^2 \)[/tex].
By these calculations, we can observe how the kinetic energy of the bottle changes as its mass increases.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.