Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which solid has a larger surface area, let's carefully examine the problem.
Step-by-Step Solution:
1. Understanding the Conversion Factor:
- The given conversion factor is [tex]\(\frac{3.28 \text{ ft}}{1 \text{ m}}\)[/tex]. This means 1 meter is equivalent to 3.28 feet.
2. Dimensions of the Solids:
- Let's assume Solid A has a side length of 1 meter.
- Solid B has a side length of 3.28 feet.
3. Convert the Side Length of Solid B to Meters:
- To compare the surface areas directly, we need both side lengths in the same unit. Convert Solid B's side length from feet to meters:
[tex]\[ \text{Side length of Solid B in meters} = \frac{3.28 \text{ ft}}{3.28 \text{ ft/m}} = 1 \text{ m} \][/tex]
4. Calculate the Surface Area of each Solid:
- The surface area [tex]\(S\)[/tex] of a cube with side length [tex]\(a\)[/tex] is given by:
[tex]\[ S = 6a^2 \][/tex]
- Surface Area of Solid A (side length = 1 m):
[tex]\[ S_A = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
- Surface Area of Solid B (side length = 1 m):
[tex]\[ S_B = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
5. Compare the Surface Areas:
- Surface area of Solid A: [tex]\(6 \text{ m}^2\)[/tex]
- Surface area of Solid B: [tex]\(6 \text{ m}^2\)[/tex]
Since both solids have the same surface area, the answer is:
C. They are the same size.
Step-by-Step Solution:
1. Understanding the Conversion Factor:
- The given conversion factor is [tex]\(\frac{3.28 \text{ ft}}{1 \text{ m}}\)[/tex]. This means 1 meter is equivalent to 3.28 feet.
2. Dimensions of the Solids:
- Let's assume Solid A has a side length of 1 meter.
- Solid B has a side length of 3.28 feet.
3. Convert the Side Length of Solid B to Meters:
- To compare the surface areas directly, we need both side lengths in the same unit. Convert Solid B's side length from feet to meters:
[tex]\[ \text{Side length of Solid B in meters} = \frac{3.28 \text{ ft}}{3.28 \text{ ft/m}} = 1 \text{ m} \][/tex]
4. Calculate the Surface Area of each Solid:
- The surface area [tex]\(S\)[/tex] of a cube with side length [tex]\(a\)[/tex] is given by:
[tex]\[ S = 6a^2 \][/tex]
- Surface Area of Solid A (side length = 1 m):
[tex]\[ S_A = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
- Surface Area of Solid B (side length = 1 m):
[tex]\[ S_B = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
5. Compare the Surface Areas:
- Surface area of Solid A: [tex]\(6 \text{ m}^2\)[/tex]
- Surface area of Solid B: [tex]\(6 \text{ m}^2\)[/tex]
Since both solids have the same surface area, the answer is:
C. They are the same size.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.