Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
Explanation:
To calculate the solute potential (\( \Psi_s \)) of a 2.0 M sucrose solution at 20 degrees Celsius under standard atmospheric conditions, we need to use the following formula:
\[ \Psi_s = -i \cdot n \cdot R \cdot T \]
Where:
- \( i \) is the ionization constant (for sucrose, which does not ionize in solution, \( i = 1 \)),
- \( n \) is the number of particles into which the solute dissociates (for sucrose, \( n = 1 \)),
- \( R \) is the gas constant (\( 0.0831 \) liter bar per mole per Kelvin),
- \( T \) is the temperature in Kelvin.
Given:
- Concentration of sucrose solution, \( C = 2.0 \) M,
- Temperature, \( T = 20 \) degrees Celsius.
First, convert temperature to Kelvin:
\[ T = 20 + 273.15 = 293.15 \text{ K} \]
Now, calculate the solute potential:
\[ \Psi_s = -1 \cdot 1 \cdot 0.0831 \cdot 293.15 \]
\[ \Psi_s = -24.426 \]
Therefore, the solute potential (\( \Psi_s \)) of a 2.0 M sucrose solution at 20 degrees Celsius under standard atmospheric conditions is approximately \( \boxed{-24.426} \) bars.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.