At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
a) The weight of a person is given by:
[tex]W=mg[/tex]
where m is the mass of the person and g is the gravitational acceleration. In this problem, the mass of the person is m=60.0 kg, while the value of g is [tex]g=9.81 m/s^2[/tex], therefore the weight of the person is
[tex]W=(60 kg)(9.81 m/s^2)=588.6 N[/tex]
b) The gravitational potential energy at the top of the hill is U=1000 J. The potential energy is also given by the product between the weight W and the height of the hill h:
[tex]U=Wh[/tex]
If we rearrange the equation, we can calculate the height of the hill, h:
[tex]h= \frac{U}{W} = \frac{1000 J}{588.6 N} =1.70 m[/tex]
c) At the bottom of the hill, all the potential energy at the top of the hill has converted into kinetic energy:
[tex]U=K[/tex]
[tex]U= \frac{1}{2} mv^2[/tex]
where m is the mass and v is the speed. If we rearrange the formula, we can calculate the speed at the bottom of the hill:
[tex]v=\sqrt{\frac{2U}{m}}=\sqrt{\frac{2\cdot 1000 J}{60.0 kg}}=5.8 m/s[/tex]
[tex]W=mg[/tex]
where m is the mass of the person and g is the gravitational acceleration. In this problem, the mass of the person is m=60.0 kg, while the value of g is [tex]g=9.81 m/s^2[/tex], therefore the weight of the person is
[tex]W=(60 kg)(9.81 m/s^2)=588.6 N[/tex]
b) The gravitational potential energy at the top of the hill is U=1000 J. The potential energy is also given by the product between the weight W and the height of the hill h:
[tex]U=Wh[/tex]
If we rearrange the equation, we can calculate the height of the hill, h:
[tex]h= \frac{U}{W} = \frac{1000 J}{588.6 N} =1.70 m[/tex]
c) At the bottom of the hill, all the potential energy at the top of the hill has converted into kinetic energy:
[tex]U=K[/tex]
[tex]U= \frac{1}{2} mv^2[/tex]
where m is the mass and v is the speed. If we rearrange the formula, we can calculate the speed at the bottom of the hill:
[tex]v=\sqrt{\frac{2U}{m}}=\sqrt{\frac{2\cdot 1000 J}{60.0 kg}}=5.8 m/s[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.