Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The length of an arc of a circle is [tex]\(\frac{26}{9} \pi\)[/tex] centimeters and the measure of the corresponding central angle is [tex]\(65^\circ\)[/tex]. What is the length of the circle's radius?

A. 8 cm
B. 4 cm
C. 16 cm
D. 2 cm


Sagot :

To determine the radius of the circle, let's follow these steps:

1. Understand the relationship between the arc length, radius, and central angle:
- The formula that relates the arc length ([tex]\(s\)[/tex]), radius ([tex]\(r\)[/tex]), and central angle in radians ([tex]\(\theta\)[/tex]) is:
[tex]\[ s = r \cdot \theta \][/tex]

2. Convert the central angle from degrees to radians:
- The central angle is given as [tex]\(65^\circ\)[/tex]. To convert degrees to radians, we use the conversion factor [tex]\(\pi\)[/tex] radians = [tex]\(180^\circ\)[/tex]:
[tex]\[ \theta = 65^\circ \times \frac{\pi \text{ radians}}{180^\circ} = \frac{65\pi}{180} = \frac{13\pi}{36} \text{ radians} \][/tex]

3. Plug the known values into the formula:
- Here, the length of the arc ([tex]\(s\)[/tex]) is [tex]\(\frac{26}{9} \pi\)[/tex] cm, and [tex]\(\theta\)[/tex] (in radians) is [tex]\(\frac{13\pi}{36}\)[/tex]:
[tex]\[ \frac{26}{9} \pi = r \cdot \frac{13\pi}{36} \][/tex]

4. Solve for the radius ([tex]\(r\)[/tex]):
- First, we can simplify the equation by dividing both sides by [tex]\(\pi\)[/tex]:
[tex]\[ \frac{26}{9} = r \cdot \frac{13}{36} \][/tex]
- To isolate [tex]\(r\)[/tex], multiply both sides by [tex]\(\frac{36}{13}\)[/tex]:
[tex]\[ r = \frac{26}{9} \times \frac{36}{13} = \frac{26 \times 36}{9 \times 13} \][/tex]
- Simplifying this further:
[tex]\[ r = \frac{936}{117} = 8 \text{ cm} \][/tex]

Therefore, the radius of the circle is [tex]\(\boxed{8 \text{ cm}}\)[/tex].