At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\( |-x| = -10 \)[/tex], let's analyze the components of the equation step-by-step:
1. Understanding Absolute Value:
- The absolute value of a number [tex]\( |a| \)[/tex] is defined as the non-negative value of [tex]\( a \)[/tex]. This means [tex]\( |a| \geq 0 \)[/tex] for any real number [tex]\( a \)[/tex].
2. Setting Up the Equation:
- The equation [tex]\( |-x| = -10 \)[/tex] states that the absolute value of [tex]\(-x\)[/tex] is equal to [tex]\(-10\)[/tex].
3. Properties of Absolute Value:
- By definition, the absolute value [tex]\( |y| \)[/tex] of any number [tex]\( y \)[/tex] is always non-negative: [tex]\( |y| \geq 0 \)[/tex].
4. Analyzing the Given Equation:
- In our case, the equation [tex]\( |-x| = -10 \)[/tex] tells us that a non-negative number [tex]\( |-x| \)[/tex] is equal to a negative number [tex]\(-10\)[/tex].
5. Conclusion:
- Since the absolute value [tex]\( |-x| \)[/tex] cannot be negative (as [tex]\( |y| \geq 0 \)[/tex]), it is impossible for [tex]\( |-x| \)[/tex] to equal [tex]\(-10\)[/tex].
Therefore, there is no real number [tex]\( x \)[/tex] that satisfies the equation [tex]\( |-x| = -10 \)[/tex]. Thus, the solution set is:
no solution.
1. Understanding Absolute Value:
- The absolute value of a number [tex]\( |a| \)[/tex] is defined as the non-negative value of [tex]\( a \)[/tex]. This means [tex]\( |a| \geq 0 \)[/tex] for any real number [tex]\( a \)[/tex].
2. Setting Up the Equation:
- The equation [tex]\( |-x| = -10 \)[/tex] states that the absolute value of [tex]\(-x\)[/tex] is equal to [tex]\(-10\)[/tex].
3. Properties of Absolute Value:
- By definition, the absolute value [tex]\( |y| \)[/tex] of any number [tex]\( y \)[/tex] is always non-negative: [tex]\( |y| \geq 0 \)[/tex].
4. Analyzing the Given Equation:
- In our case, the equation [tex]\( |-x| = -10 \)[/tex] tells us that a non-negative number [tex]\( |-x| \)[/tex] is equal to a negative number [tex]\(-10\)[/tex].
5. Conclusion:
- Since the absolute value [tex]\( |-x| \)[/tex] cannot be negative (as [tex]\( |y| \geq 0 \)[/tex]), it is impossible for [tex]\( |-x| \)[/tex] to equal [tex]\(-10\)[/tex].
Therefore, there is no real number [tex]\( x \)[/tex] that satisfies the equation [tex]\( |-x| = -10 \)[/tex]. Thus, the solution set is:
no solution.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.