Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The equation of tangent to the circle [tex]x^{2} +y^{2} =100[/tex] at the point (-6,8) is -6x+8y=100.
Given the equation of circle [tex]x^{2} +y^{2} =100[/tex]
and point at which the tangent meets the circle is (-6,8).
A tangent to a circle is basically a line at point P with coordinates is a straight line that touches the circle at P. The tangent is perpendicular to the radius which joins the centre of circle to the point P.
Linear equation looks like y=mx+c.
Tangent to a circle of equation [tex]x^{2} +y^{2} =a^{2}[/tex] at (z,t) is:
xz+ty=[tex]a^{2}[/tex].
We have to just put the values in the formula above to get the equation of tangent to the circle [tex]x^{2} +y^{2} =100[/tex] at (-6,8).
It will be as under:
x(-6)+y(8)=100
-6x+8y=100
Hence the equation of tangent to the circle at the point (-6,8) is -6x+8y=100.
Learn more about tangent of circle at https://brainly.com/question/17040970
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.