Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]y=\dfrac{5}{4}x^3+10[/tex]
Step-by-step explanation:
Given information:
- [tex]y=ax^3+d[/tex]
- (0, 10)
- (2, 20)
Create two equations by substituting the given points into the given equation:
Equation 1: point (0, 10)
[tex]\implies a(0)^3+d=10[/tex]
[tex]\implies 0+d=10[/tex]
[tex]\implies d=10[/tex]
Equation 2: point (2, 20)
[tex]\implies a(2)^3+d=20[/tex]
[tex]\implies 8a+d=20[/tex]
Substitute Equation 1 into Equation 2 and solve for a:
[tex]\implies 8a+d=20[/tex]
[tex]\implies 8a+10=20[/tex]
[tex]\implies 8a+10-10=20-10[/tex]
[tex]\implies 8a=10[/tex]
[tex]\implies \dfrac{8a}{8}=\dfrac{10}{8}[/tex]
[tex]\implies a=\dfrac{10}{8}[/tex]
[tex]\implies a=\dfrac{5}{4}[/tex]
Finally, substitute the found values of a and d into the original formula:
[tex]\implies y=\dfrac{5}{4}x^3+10[/tex]
Check by substituting the x-values of the two given points into the found equation:
[tex]x=0 \implies y=\dfrac{5}{4}(0)^3+10=10 \leftarrow \textsf{correct}[/tex]
[tex]x=2 \implies y=\dfrac{5}{4}(2)^3+10=20 \leftarrow \textsf{correct}[/tex]
- y=ax³+d
Put(0,10)
- 10=a(0)³+d
- d=10
Now
Put again (2,20) this time
- 20=2³a+10
- 10=8a
- a=10/8
- a=5/4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.