Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Consult the figure. To find the length of the span of a proposed ski lift from A to B,
a surveyor measures the angle DAB to be 25° and then walks off a distance of
L = 1700 feet to C and measures the angle ACB to be 15°. What is the distance
from A to B?


Sagot :

The figure is an illustration of laws of sines, and the distance from A to B is 2534 feet

How to determine the distance AB?

The given parameters are:

DAB = 25°

L = 1700

ACB = 15°

Start by calculating the measure of angles CAB and ABC

CAB = 180 - DAB

This gives

CAB = 180 - 25°

CAB = 155°

Also, we have:

ABC = 180 - CAB - ACB

ABC = 180 - 155 - 15

ABC = 10°

The length AB is then calculated using the following laws of sines

[tex]\frac{AB}{\sin(C)} = \frac{L}{\sin(B)}[/tex]

This gives

[tex]\frac{AB}{\sin(15)} = \frac{1700}{\sin(10)}[/tex]

Make AB the subject

[tex]AB = \frac{1700}{\sin(10)} *\sin(15)[/tex]

Evaluate

AB =  2533.8151116

Approximate

AB = 2534

Hence, the distance from A to B is 2534 feet

Read more about laws of sines at:

https://brainly.com/question/16955971

#SPJ1

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.