Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
[tex]k:\ y = x-11\ \ \ \Leftrightarrow\ \ \ x-y-11=0\\ and\\ l:\ y = x-7\ \ \ \Leftrightarrow\ \ \ x-y-7=0\\\\the\ distance:\\\\ d(k;l)= \frac{\big{|-11-(-7)|}}{\big{ \sqrt{1^2+1^2} }} =\frac{\big{|-11+7|}}{\big{ \sqrt{2} }} =\frac{\big{|-4|}}{\big{ \sqrt{2} }} =\frac{\big{4\cdot \sqrt{2} }}{\big{ \sqrt{2}\cdot \sqrt{2} }} =\frac{\big{4 \sqrt{2} }}{\big{2 }} =2 \sqrt{2} [/tex]
[tex]Given \ the \ equations \ of \ two \ non-vertical \ parallel \ lines:\\\\y = mx+b_1\\y = mx+b_2\\\\the \ distance \ between \ them \ can \ be \ expressed \ as : \\\\d= \frac{|b_{1}-b_{2}|}{ \sqrt{ m^2+1} }[/tex]
[tex]y = x-11 \\ y = x-7 \\\\\\d= \frac{| -11- (-7)|}{ \sqrt{ 1^2+1} } =\frac{| -11+7|}{ \sqrt{ 1+1} } = \frac{|-4|}{ \sqrt{2} } = \frac{4}{ \sqrt{2} }\cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4\sqrt{2}}{2}=2\sqrt{2}[/tex]
[tex]y = x-11 \\ y = x-7 \\\\\\d= \frac{| -11- (-7)|}{ \sqrt{ 1^2+1} } =\frac{| -11+7|}{ \sqrt{ 1+1} } = \frac{|-4|}{ \sqrt{2} } = \frac{4}{ \sqrt{2} }\cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4\sqrt{2}}{2}=2\sqrt{2}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.