Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
[tex]4x^2+9y^2=36\\
\\
\frac{4x^2}{36}+\frac{9y^2}{36}=\frac{36}{36}\\
\\
\boxed{\frac{x^2}{9}+\frac{y^2}{4}=1}[/tex]
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
Answer:
Ellipse
Domain:[-3,3]
Range:[-2,2]
Step-by-step explanation:
We are given that an equation
[tex]4x^2+9y^2=36[/tex]
We have to find the type of conic section and find the domain and range of conic section.
Divide by 36 on both sides then, we get
[tex]\frac{x^2}{9}+\frac{y^2}{4}=1[/tex]
[tex]\frac{x^2}{3^2}+\frac{y^2}{2^2}=1[/tex]
It is an equation of ellipse.
Substitute y=0 then , we get
[tex]\frac{x^2}{9}=1[/tex]
[tex]x^2=9[/tex]
[tex]x=\pm 3[/tex]
Domain :[-3,3]
Substitute x=0 then we get
[tex]\frac{y^2}{4}=1[/tex]
[tex]y^2=4[/tex]
[tex]y=\pm 2[/tex]
Range=[-2,2]

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.