Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What type of conic section is given by the equation 4x^2+9y^2=36? What are its domain and range?

Sagot :

Ryan2
[tex]4x^2+9y^2=36\\ \\ \frac{4x^2}{36}+\frac{9y^2}{36}=\frac{36}{36}\\ \\ \boxed{\frac{x^2}{9}+\frac{y^2}{4}=1}[/tex]

This is a equation of a ellipse (0,0) centered

Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}

Answer:

Ellipse

Domain:[-3,3]

Range:[-2,2]

Step-by-step explanation:

We are given that an equation

[tex]4x^2+9y^2=36[/tex]

We have to find the type of conic section and find the domain and range of conic section.

Divide by 36 on both sides then, we get

[tex]\frac{x^2}{9}+\frac{y^2}{4}=1[/tex]

[tex]\frac{x^2}{3^2}+\frac{y^2}{2^2}=1[/tex]

It is an equation of ellipse.

Substitute y=0 then , we get

[tex]\frac{x^2}{9}=1[/tex]

[tex]x^2=9[/tex]

[tex]x=\pm 3[/tex]

Domain :[-3,3]

Substitute x=0 then we get

[tex]\frac{y^2}{4}=1[/tex]

[tex]y^2=4[/tex]

[tex]y=\pm 2[/tex]

Range=[-2,2]

View image lublana