Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the measure of one interior angle of a regular 23-gon, we can use the formula for calculating the measure of an interior angle of a regular polygon. Here is the step-by-step explanation:
1. Understand the formula:
The formula to find the measure of one interior angle of a regular polygon with [tex]\( n \)[/tex] sides is:
[tex]\[ \text{Interior angle} = \frac{(n-2) \times 180^\circ}{n} \][/tex]
This formula comes from the fact that the sum of all interior angles of a polygon with [tex]\( n \)[/tex] sides is [tex]\((n-2) \times 180^\circ\)[/tex].
2. Substitute the given value:
For a 23-gon, [tex]\( n = 23 \)[/tex]. Substitute this value into the formula:
[tex]\[ \text{Interior angle} = \frac{(23-2) \times 180^\circ}{23} \][/tex]
3. Simplify the expression:
Calculate the numerator first:
[tex]\[ 23 - 2 = 21 \][/tex]
So, the numerator becomes:
[tex]\[ 21 \times 180^\circ \][/tex]
Now, calculate:
[tex]\[ 21 \times 180^\circ = 3780^\circ \][/tex]
4. Divide by the number of sides:
Next, divide this result by the number of sides, which is 23:
[tex]\[ \frac{3780^\circ}{23} \][/tex]
Perform the division:
[tex]\[ 3780^\circ \div 23 = 164.34782608695653^\circ \][/tex]
Therefore, the measure of one interior angle of a regular 23-gon is approximately [tex]\( 164.3^\circ \)[/tex].
So, the correct answer is:
D. 164.3
1. Understand the formula:
The formula to find the measure of one interior angle of a regular polygon with [tex]\( n \)[/tex] sides is:
[tex]\[ \text{Interior angle} = \frac{(n-2) \times 180^\circ}{n} \][/tex]
This formula comes from the fact that the sum of all interior angles of a polygon with [tex]\( n \)[/tex] sides is [tex]\((n-2) \times 180^\circ\)[/tex].
2. Substitute the given value:
For a 23-gon, [tex]\( n = 23 \)[/tex]. Substitute this value into the formula:
[tex]\[ \text{Interior angle} = \frac{(23-2) \times 180^\circ}{23} \][/tex]
3. Simplify the expression:
Calculate the numerator first:
[tex]\[ 23 - 2 = 21 \][/tex]
So, the numerator becomes:
[tex]\[ 21 \times 180^\circ \][/tex]
Now, calculate:
[tex]\[ 21 \times 180^\circ = 3780^\circ \][/tex]
4. Divide by the number of sides:
Next, divide this result by the number of sides, which is 23:
[tex]\[ \frac{3780^\circ}{23} \][/tex]
Perform the division:
[tex]\[ 3780^\circ \div 23 = 164.34782608695653^\circ \][/tex]
Therefore, the measure of one interior angle of a regular 23-gon is approximately [tex]\( 164.3^\circ \)[/tex].
So, the correct answer is:
D. 164.3
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.