Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the area bounded by the curve [tex]\(y=2x^2+x+1\)[/tex], the x-axis, and the vertical lines [tex]\(x=1\)[/tex] and [tex]\(x=3\)[/tex], we need to evaluate the definite integral of the function [tex]\(y=2x^2+x+1\)[/tex] with respect to [tex]\(x\)[/tex] from 1 to 3.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.