Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the [tex]\( n \)[/tex]-th term of the given sequence, observe the pattern in the terms provided:
[tex]\[ \frac{1}{3}, \quad \frac{1}{6}, \quad \frac{1}{9}, \quad \frac{1}{12}, \quad \ldots \][/tex]
1. Identify the Pattern:
Each term has the numerator 1. We need to examine the denominators to find a pattern:
[tex]\[ 3, \quad 6, \quad 9, \quad 12, \quad \ldots \][/tex]
These denominators form an arithmetic sequence where each term increases by 3.
2. Form the Denominator:
Notice that the first term corresponds to the denominator [tex]\(3\)[/tex] (which is [tex]\(3 \times 1\)[/tex]), the second term corresponds to the denominator [tex]\(6\)[/tex] (which is [tex]\(3 \times 2\)[/tex]), and so forth. In general, the denominator of the [tex]\( n \)[/tex]-th term is [tex]\( 3n \)[/tex].
3. Write the [tex]\( n \)[/tex]-th Term:
Since every term in the sequence has the numerator 1, and the denominator for the [tex]\( n \)[/tex]-th term is [tex]\( 3n \)[/tex], we can write the [tex]\( n \)[/tex]-th term as:
[tex]\[ \frac{1}{3n} \][/tex]
The general expression for the [tex]\( n \)[/tex]-th term of the sequence is:
[tex]\[ \boxed{\frac{1}{3n}} \][/tex]
Now, let's illustrate this by determining the first few terms in the sequence to verify our formula:
- For [tex]\( n = 1 \)[/tex]:
[tex]\[ \frac{1}{3 \times 1} = \frac{1}{3} \][/tex]
- For [tex]\( n = 2 \)[/tex]:
[tex]\[ \frac{1}{3 \times 2} = \frac{1}{6} \][/tex]
- For [tex]\( n = 3 \)[/tex]:
[tex]\[ \frac{1}{3 \times 3} = \frac{1}{9} \][/tex]
- For [tex]\( n = 4 \)[/tex]:
[tex]\[ \frac{1}{3 \times 4} = \frac{1}{12} \][/tex]
- For [tex]\( n = 5 \)[/tex]:
[tex]\[ \frac{1}{3 \times 5} = \frac{1}{15} \][/tex]
These computations align with the given sequence, validating that our expression [tex]\(\frac{1}{3n}\)[/tex] for the [tex]\( n \)[/tex]-th term is correct.
[tex]\[ \frac{1}{3}, \quad \frac{1}{6}, \quad \frac{1}{9}, \quad \frac{1}{12}, \quad \ldots \][/tex]
1. Identify the Pattern:
Each term has the numerator 1. We need to examine the denominators to find a pattern:
[tex]\[ 3, \quad 6, \quad 9, \quad 12, \quad \ldots \][/tex]
These denominators form an arithmetic sequence where each term increases by 3.
2. Form the Denominator:
Notice that the first term corresponds to the denominator [tex]\(3\)[/tex] (which is [tex]\(3 \times 1\)[/tex]), the second term corresponds to the denominator [tex]\(6\)[/tex] (which is [tex]\(3 \times 2\)[/tex]), and so forth. In general, the denominator of the [tex]\( n \)[/tex]-th term is [tex]\( 3n \)[/tex].
3. Write the [tex]\( n \)[/tex]-th Term:
Since every term in the sequence has the numerator 1, and the denominator for the [tex]\( n \)[/tex]-th term is [tex]\( 3n \)[/tex], we can write the [tex]\( n \)[/tex]-th term as:
[tex]\[ \frac{1}{3n} \][/tex]
The general expression for the [tex]\( n \)[/tex]-th term of the sequence is:
[tex]\[ \boxed{\frac{1}{3n}} \][/tex]
Now, let's illustrate this by determining the first few terms in the sequence to verify our formula:
- For [tex]\( n = 1 \)[/tex]:
[tex]\[ \frac{1}{3 \times 1} = \frac{1}{3} \][/tex]
- For [tex]\( n = 2 \)[/tex]:
[tex]\[ \frac{1}{3 \times 2} = \frac{1}{6} \][/tex]
- For [tex]\( n = 3 \)[/tex]:
[tex]\[ \frac{1}{3 \times 3} = \frac{1}{9} \][/tex]
- For [tex]\( n = 4 \)[/tex]:
[tex]\[ \frac{1}{3 \times 4} = \frac{1}{12} \][/tex]
- For [tex]\( n = 5 \)[/tex]:
[tex]\[ \frac{1}{3 \times 5} = \frac{1}{15} \][/tex]
These computations align with the given sequence, validating that our expression [tex]\(\frac{1}{3n}\)[/tex] for the [tex]\( n \)[/tex]-th term is correct.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.