Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which values are solutions to the quadratic equation [tex]\( x^2 + 2x = 8 \)[/tex], we first need to rewrite the equation in its standard form, which is [tex]\( ax^2 + bx + c = 0 \)[/tex].
Starting with the given equation:
[tex]\[ x^2 + 2x = 8 \][/tex]
Subtract 8 from both sides to set the equation to 0:
[tex]\[ x^2 + 2x - 8 = 0 \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Next, we solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 32}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 6}{2} \][/tex]
We now compute the two possible solutions:
[tex]\[ x_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Thus, the solutions to the quadratic equation [tex]\( x^2 + 2x - 8 = 0 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Now we check which of the given options match these solutions:
A. 6
B. -1
C. -4
D. 2
E. 8
From our calculation, the solutions are 2 and -4. Therefore, the correct answers are:
C. -4
D. 2
Starting with the given equation:
[tex]\[ x^2 + 2x = 8 \][/tex]
Subtract 8 from both sides to set the equation to 0:
[tex]\[ x^2 + 2x - 8 = 0 \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Next, we solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 32}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 6}{2} \][/tex]
We now compute the two possible solutions:
[tex]\[ x_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Thus, the solutions to the quadratic equation [tex]\( x^2 + 2x - 8 = 0 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Now we check which of the given options match these solutions:
A. 6
B. -1
C. -4
D. 2
E. 8
From our calculation, the solutions are 2 and -4. Therefore, the correct answers are:
C. -4
D. 2
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.