Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's find the difference of the given polynomials step by step.
Given polynomials:
[tex]\[ 3n^2(n^2 + 4n - 5) - (2n^2 - n^4 + 3) \][/tex]
### Step 1: Expand the first polynomial
[tex]\[ 3n^2(n^2 + 4n - 5) \][/tex]
Distribute [tex]\(3n^2\)[/tex] across each term inside the parentheses:
[tex]\[ 3n^2 \cdot n^2 + 3n^2 \cdot 4n - 3n^2 \cdot 5 \][/tex]
[tex]\[ = 3n^4 + 12n^3 - 15n^2 \][/tex]
So, the expanded form of the first polynomial is:
[tex]\[ 3n^4 + 12n^3 - 15n^2 \][/tex]
### Step 2: Write the second polynomial in its simplified form
The second polynomial is:
[tex]\[ 2n^2 - n^4 + 3 \][/tex]
### Step 3: Subtract the second polynomial from the expanded first polynomial
[tex]\[ (3n^4 + 12n^3 - 15n^2) - (2n^2 - n^4 + 3) \][/tex]
First, distribute the negative sign across each term in the second polynomial:
[tex]\[ 3n^4 + 12n^3 - 15n^2 - 2n^2 + n^4 - 3 \][/tex]
Next, combine like terms:
[tex]\[ 3n^4 + n^4 + 12n^3 - 15n^2 - 2n^2 - 3 \][/tex]
Simplify the polynomial:
[tex]\[ = (3n^4 + n^4) + 12n^3 + (-15n^2 - 2n^2) - 3 \][/tex]
[tex]\[ = 4n^4 + 12n^3 - 17n^2 - 3 \][/tex]
### Step 4: Determine the degree and number of terms
The simplified polynomial is:
[tex]\[ 4n^4 + 12n^3 - 17n^2 - 3 \][/tex]
- Degree: The highest power of [tex]\(n\)[/tex] is 4, so the degree is 4.
- Number of Terms: There are four distinct terms: [tex]\(4n^4\)[/tex], [tex]\(12n^3\)[/tex], [tex]\(-17n^2\)[/tex], and [tex]\(-3\)[/tex].
Therefore, the resultant polynomial is a [tex]\(4^{\text{th}}\)[/tex]-degree polynomial with 4 terms.
### Answer
[tex]\[ \text{Final classification:} \, \boxed{\text{B. } 4^{\text {th }} \text{ degree polynomial with 4 terms}.} \][/tex]
Given polynomials:
[tex]\[ 3n^2(n^2 + 4n - 5) - (2n^2 - n^4 + 3) \][/tex]
### Step 1: Expand the first polynomial
[tex]\[ 3n^2(n^2 + 4n - 5) \][/tex]
Distribute [tex]\(3n^2\)[/tex] across each term inside the parentheses:
[tex]\[ 3n^2 \cdot n^2 + 3n^2 \cdot 4n - 3n^2 \cdot 5 \][/tex]
[tex]\[ = 3n^4 + 12n^3 - 15n^2 \][/tex]
So, the expanded form of the first polynomial is:
[tex]\[ 3n^4 + 12n^3 - 15n^2 \][/tex]
### Step 2: Write the second polynomial in its simplified form
The second polynomial is:
[tex]\[ 2n^2 - n^4 + 3 \][/tex]
### Step 3: Subtract the second polynomial from the expanded first polynomial
[tex]\[ (3n^4 + 12n^3 - 15n^2) - (2n^2 - n^4 + 3) \][/tex]
First, distribute the negative sign across each term in the second polynomial:
[tex]\[ 3n^4 + 12n^3 - 15n^2 - 2n^2 + n^4 - 3 \][/tex]
Next, combine like terms:
[tex]\[ 3n^4 + n^4 + 12n^3 - 15n^2 - 2n^2 - 3 \][/tex]
Simplify the polynomial:
[tex]\[ = (3n^4 + n^4) + 12n^3 + (-15n^2 - 2n^2) - 3 \][/tex]
[tex]\[ = 4n^4 + 12n^3 - 17n^2 - 3 \][/tex]
### Step 4: Determine the degree and number of terms
The simplified polynomial is:
[tex]\[ 4n^4 + 12n^3 - 17n^2 - 3 \][/tex]
- Degree: The highest power of [tex]\(n\)[/tex] is 4, so the degree is 4.
- Number of Terms: There are four distinct terms: [tex]\(4n^4\)[/tex], [tex]\(12n^3\)[/tex], [tex]\(-17n^2\)[/tex], and [tex]\(-3\)[/tex].
Therefore, the resultant polynomial is a [tex]\(4^{\text{th}}\)[/tex]-degree polynomial with 4 terms.
### Answer
[tex]\[ \text{Final classification:} \, \boxed{\text{B. } 4^{\text {th }} \text{ degree polynomial with 4 terms}.} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.