Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's solve the given system of equations using the elimination method and find the correct solution.
We are given:
[tex]\[ \begin{array}{l} 6x + 4y = 42 \quad \text{... (1)} \\ -3x + 3y = -6 \quad \text{... (2)} \end{array} \][/tex]
Our goal is to eliminate one of the variables. In this case, let's eliminate [tex]\(x\)[/tex] by aligning the coefficients of [tex]\(x\)[/tex]. To do this, we can manipulate equation (2) so that the coefficient of [tex]\(x\)[/tex] matches the coefficient in equation (1).
Step 1: Multiply equation (2) by 2. This gives us:
[tex]\[ -3x \cdot 2 + 3y \cdot 2 = -6 \cdot 2 \][/tex]
which simplifies to:
[tex]\[ -6x + 6y = -12 \quad \text{... (3)} \][/tex]
Step 2: Now add equation (1) and equation (3):
[tex]\[ (6x + 4y) + (-6x + 6y) = 42 + (-12) \][/tex]
Simplifying this, we get:
[tex]\[ 6x - 6x + 4y + 6y = 42 - 12 \][/tex]
[tex]\[ 0x + 10y = 30 \][/tex]
[tex]\[ 10y = 30 \][/tex]
Step 3: Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{30}{10} \][/tex]
[tex]\[ y = 3 \][/tex]
Step 4: Substitute the value of [tex]\(y\)[/tex] back into equation (1) to solve for [tex]\(x\)[/tex]:
[tex]\[ 6x + 4y = 42 \][/tex]
Substitute [tex]\(y = 3\)[/tex]:
[tex]\[ 6x + 4 \cdot 3 = 42 \][/tex]
[tex]\[ 6x + 12 = 42 \][/tex]
Subtract 12 from both sides:
[tex]\[ 6x = 30 \][/tex]
Divide both sides by 6:
[tex]\[ x = \frac{30}{6} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (5, 3) \][/tex]
Let's verify the result against the given multiple-choice answers:
- (27,30)
- (3.6,4.6)
- (4.6,3.6)
- (3,5)
- (5,3)
- (30,27)
The solution [tex]\((x, y) = (5, 3)\)[/tex] matches one of the options exactly:
[tex]\[ (5, 3) \][/tex]
Hence, the correct solution to the system of equations is:
[tex]\((5, 3)\)[/tex].
We are given:
[tex]\[ \begin{array}{l} 6x + 4y = 42 \quad \text{... (1)} \\ -3x + 3y = -6 \quad \text{... (2)} \end{array} \][/tex]
Our goal is to eliminate one of the variables. In this case, let's eliminate [tex]\(x\)[/tex] by aligning the coefficients of [tex]\(x\)[/tex]. To do this, we can manipulate equation (2) so that the coefficient of [tex]\(x\)[/tex] matches the coefficient in equation (1).
Step 1: Multiply equation (2) by 2. This gives us:
[tex]\[ -3x \cdot 2 + 3y \cdot 2 = -6 \cdot 2 \][/tex]
which simplifies to:
[tex]\[ -6x + 6y = -12 \quad \text{... (3)} \][/tex]
Step 2: Now add equation (1) and equation (3):
[tex]\[ (6x + 4y) + (-6x + 6y) = 42 + (-12) \][/tex]
Simplifying this, we get:
[tex]\[ 6x - 6x + 4y + 6y = 42 - 12 \][/tex]
[tex]\[ 0x + 10y = 30 \][/tex]
[tex]\[ 10y = 30 \][/tex]
Step 3: Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{30}{10} \][/tex]
[tex]\[ y = 3 \][/tex]
Step 4: Substitute the value of [tex]\(y\)[/tex] back into equation (1) to solve for [tex]\(x\)[/tex]:
[tex]\[ 6x + 4y = 42 \][/tex]
Substitute [tex]\(y = 3\)[/tex]:
[tex]\[ 6x + 4 \cdot 3 = 42 \][/tex]
[tex]\[ 6x + 12 = 42 \][/tex]
Subtract 12 from both sides:
[tex]\[ 6x = 30 \][/tex]
Divide both sides by 6:
[tex]\[ x = \frac{30}{6} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (5, 3) \][/tex]
Let's verify the result against the given multiple-choice answers:
- (27,30)
- (3.6,4.6)
- (4.6,3.6)
- (3,5)
- (5,3)
- (30,27)
The solution [tex]\((x, y) = (5, 3)\)[/tex] matches one of the options exactly:
[tex]\[ (5, 3) \][/tex]
Hence, the correct solution to the system of equations is:
[tex]\((5, 3)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.