Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the degree measure of angle BAC, we follow these steps:
1. Understand the Problem: We are given an equation involving the arccosine function, [tex]\(\cos^{-1}\left(\frac{3.4}{10}\right) = x\)[/tex], and need to determine the degree measure of angle [tex]\(x\)[/tex].
2. Calculate the Radian Measure: The arccosine function gives us the angle in radians whose cosine value is [tex]\(\frac{3.4}{10}\)[/tex]. Using a calculator or a mathematical software, we find that:
[tex]\[ x = \cos^{-1}\left(\frac{3.4}{10}\right) \approx 1.2238794292677349 \text{ radians} \][/tex]
3. Convert Radians to Degrees: Next, we need to convert the angle from radians to degrees. The formula for converting radians to degrees is:
[tex]\[ \text{degrees} = \text{radians} \times \left(\frac{180}{\pi}\right) \][/tex]
Applying the formula:
[tex]\[ x \text{ (in degrees)} = 1.2238794292677349 \times \left(\frac{180}{\pi}\right) \approx 70.12312592992117 \text{ degrees} \][/tex]
4. Round to the Nearest Whole Degree: Finally, we round the degree measure to the nearest whole number:
[tex]\[ 70.12312592992117 \text{ degrees} \approx 70^\circ \][/tex]
Therefore, the degree measure of angle BAC, rounded to the nearest whole degree, is [tex]\(70^\circ\)[/tex]. The correct answer is:
[tex]\[ \boxed{70^\circ} \][/tex]
1. Understand the Problem: We are given an equation involving the arccosine function, [tex]\(\cos^{-1}\left(\frac{3.4}{10}\right) = x\)[/tex], and need to determine the degree measure of angle [tex]\(x\)[/tex].
2. Calculate the Radian Measure: The arccosine function gives us the angle in radians whose cosine value is [tex]\(\frac{3.4}{10}\)[/tex]. Using a calculator or a mathematical software, we find that:
[tex]\[ x = \cos^{-1}\left(\frac{3.4}{10}\right) \approx 1.2238794292677349 \text{ radians} \][/tex]
3. Convert Radians to Degrees: Next, we need to convert the angle from radians to degrees. The formula for converting radians to degrees is:
[tex]\[ \text{degrees} = \text{radians} \times \left(\frac{180}{\pi}\right) \][/tex]
Applying the formula:
[tex]\[ x \text{ (in degrees)} = 1.2238794292677349 \times \left(\frac{180}{\pi}\right) \approx 70.12312592992117 \text{ degrees} \][/tex]
4. Round to the Nearest Whole Degree: Finally, we round the degree measure to the nearest whole number:
[tex]\[ 70.12312592992117 \text{ degrees} \approx 70^\circ \][/tex]
Therefore, the degree measure of angle BAC, rounded to the nearest whole degree, is [tex]\(70^\circ\)[/tex]. The correct answer is:
[tex]\[ \boxed{70^\circ} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.