Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem, let's carefully examine the given logical implications and deduce which statement must be true based on them:
1. We are given that [tex]\( a \Rightarrow b \)[/tex]. This means that if [tex]\( a \)[/tex] is true, then [tex]\( b \)[/tex] must also be true.
2. We are also given that [tex]\( b \Rightarrow c \)[/tex]. This means that if [tex]\( b \)[/tex] is true, then [tex]\( c \)[/tex] must also be true.
Now, let's use these two implications together:
- If [tex]\( a \)[/tex] is true (given by [tex]\( a \Rightarrow b \)[/tex]), [tex]\( b \)[/tex] must be true.
- Since [tex]\( b \)[/tex] is true (derived from the first implication), [tex]\( c \)[/tex] must also be true (from [tex]\( b \Rightarrow c \)[/tex]).
Thus, if [tex]\( a \)[/tex] is true, then [tex]\( b \)[/tex] is true, and if [tex]\( b \)[/tex] is true, then [tex]\( c \)[/tex] is true. By transitivity, we can infer that if [tex]\( a \)[/tex] is true, then [tex]\( c \)[/tex] must also be true. This combined implication is [tex]\( a \Rightarrow c \)[/tex].
Therefore, the statement [tex]\( a \Rightarrow c \)[/tex] must be true.
Correct answer:
D. [tex]\( a \Rightarrow c \)[/tex]
1. We are given that [tex]\( a \Rightarrow b \)[/tex]. This means that if [tex]\( a \)[/tex] is true, then [tex]\( b \)[/tex] must also be true.
2. We are also given that [tex]\( b \Rightarrow c \)[/tex]. This means that if [tex]\( b \)[/tex] is true, then [tex]\( c \)[/tex] must also be true.
Now, let's use these two implications together:
- If [tex]\( a \)[/tex] is true (given by [tex]\( a \Rightarrow b \)[/tex]), [tex]\( b \)[/tex] must be true.
- Since [tex]\( b \)[/tex] is true (derived from the first implication), [tex]\( c \)[/tex] must also be true (from [tex]\( b \Rightarrow c \)[/tex]).
Thus, if [tex]\( a \)[/tex] is true, then [tex]\( b \)[/tex] is true, and if [tex]\( b \)[/tex] is true, then [tex]\( c \)[/tex] is true. By transitivity, we can infer that if [tex]\( a \)[/tex] is true, then [tex]\( c \)[/tex] must also be true. This combined implication is [tex]\( a \Rightarrow c \)[/tex].
Therefore, the statement [tex]\( a \Rightarrow c \)[/tex] must be true.
Correct answer:
D. [tex]\( a \Rightarrow c \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.