Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the problem step by step.
We are given the revenue function:
[tex]\[ R(x) = -x^2 + 50x + 300 \][/tex]
This is a quadratic function of the form [tex]\( R(x) = ax^2 + bx + c \)[/tex], where:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 50 \)[/tex]
- [tex]\( c = 300 \)[/tex]
Quadratic functions form a parabola, and since the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, the parabola opens downwards. This means the maximum revenue occurs at the vertex of the parabola.
The x-coordinate of the vertex of a parabola given by [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Plug in the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ x = -\frac{50}{2(-1)} \][/tex]
[tex]\[ x = -\frac{50}{-2} \][/tex]
[tex]\[ x = 25 \][/tex]
So, 25 boxes of paper should be sold to maximize revenue.
Next, we calculate the maximum revenue by substituting [tex]\( x = 25 \)[/tex] back into the revenue function [tex]\( R(x) \)[/tex]:
[tex]\[ R(25) = - (25)^2 + 50(25) + 300 \][/tex]
[tex]\[ R(25) = -625 + 1250 + 300 \][/tex]
[tex]\[ R(25) = 925 \][/tex]
Therefore, the maximum revenue is [tex]$925. To summarize: - The number of boxes of paper that should be sold to maximize revenue is 25. - The maximum revenue is $[/tex]925.
We are given the revenue function:
[tex]\[ R(x) = -x^2 + 50x + 300 \][/tex]
This is a quadratic function of the form [tex]\( R(x) = ax^2 + bx + c \)[/tex], where:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 50 \)[/tex]
- [tex]\( c = 300 \)[/tex]
Quadratic functions form a parabola, and since the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, the parabola opens downwards. This means the maximum revenue occurs at the vertex of the parabola.
The x-coordinate of the vertex of a parabola given by [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Plug in the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ x = -\frac{50}{2(-1)} \][/tex]
[tex]\[ x = -\frac{50}{-2} \][/tex]
[tex]\[ x = 25 \][/tex]
So, 25 boxes of paper should be sold to maximize revenue.
Next, we calculate the maximum revenue by substituting [tex]\( x = 25 \)[/tex] back into the revenue function [tex]\( R(x) \)[/tex]:
[tex]\[ R(25) = - (25)^2 + 50(25) + 300 \][/tex]
[tex]\[ R(25) = -625 + 1250 + 300 \][/tex]
[tex]\[ R(25) = 925 \][/tex]
Therefore, the maximum revenue is [tex]$925. To summarize: - The number of boxes of paper that should be sold to maximize revenue is 25. - The maximum revenue is $[/tex]925.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.