Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To approximate the value of [tex]\(\log_b 18\)[/tex] using the given values [tex]\(\log_b 6 = 0.921\)[/tex] and [tex]\(\log_b 3 \approx 0.565\)[/tex], we can utilize the properties of logarithms, particularly the property that states the logarithm of a product is the sum of the logarithms of the factors.
Given:
[tex]\[ \log_b 6 = 0.921 \][/tex]
and
[tex]\[ \log_b 3 \approx 0.565 \][/tex]
We need to find [tex]\(\log_b 18\)[/tex]. Notice that [tex]\(18\)[/tex] can be expressed as the product of [tex]\(6\)[/tex] and [tex]\(3\)[/tex]:
[tex]\[ 18 = 6 \times 3 \][/tex]
Using the product property of logarithms, we can express [tex]\(\log_b 18\)[/tex] as:
[tex]\[ \log_b 18 = \log_b (6 \times 3) \][/tex]
According to the product rule for logarithms:
[tex]\[ \log_b (6 \times 3) = \log_b 6 + \log_b 3 \][/tex]
Substituting the given values:
[tex]\[ \log_b 18 = \log_b 6 + \log_b 3 = 0.921 + 0.565 \][/tex]
Adding these values together, we obtain:
[tex]\[ 0.921 + 0.565 = 1.486 \][/tex]
Therefore, the approximate value of [tex]\(\log_b 18\)[/tex] is:
[tex]\[ \log_b 18 \approx 1.486 \][/tex]
Given:
[tex]\[ \log_b 6 = 0.921 \][/tex]
and
[tex]\[ \log_b 3 \approx 0.565 \][/tex]
We need to find [tex]\(\log_b 18\)[/tex]. Notice that [tex]\(18\)[/tex] can be expressed as the product of [tex]\(6\)[/tex] and [tex]\(3\)[/tex]:
[tex]\[ 18 = 6 \times 3 \][/tex]
Using the product property of logarithms, we can express [tex]\(\log_b 18\)[/tex] as:
[tex]\[ \log_b 18 = \log_b (6 \times 3) \][/tex]
According to the product rule for logarithms:
[tex]\[ \log_b (6 \times 3) = \log_b 6 + \log_b 3 \][/tex]
Substituting the given values:
[tex]\[ \log_b 18 = \log_b 6 + \log_b 3 = 0.921 + 0.565 \][/tex]
Adding these values together, we obtain:
[tex]\[ 0.921 + 0.565 = 1.486 \][/tex]
Therefore, the approximate value of [tex]\(\log_b 18\)[/tex] is:
[tex]\[ \log_b 18 \approx 1.486 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.