Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the situation step by step:
1. Determine the distances traveled by Joseph and Isabelle after 1.5 hours:
- Joseph jogged north at 8 kilometers per hour.
[tex]\[ \text{Distance traveled by Joseph} = 8 \text{ km/h} \times 1.5 \text{ h} = 12 \text{ km} \][/tex]
- Isabelle rode her bike west at 12 kilometers per hour.
[tex]\[ \text{Distance traveled by Isabelle} = 12 \text{ km/h} \times 1.5 \text{ h} = 18 \text{ km} \][/tex]
2. Calculate the squared distances:
- The square of the distance traveled by Joseph:
[tex]\[ 12^2 = 144 \][/tex]
- The square of the distance traveled by Isabelle:
[tex]\[ 18^2 = 324 \][/tex]
3. Sum the squares of the distances:
[tex]\[ 144 + 324 = 468 \][/tex]
4. Using the Pythagorean theorem, find the distance [tex]\( d \)[/tex] between Joseph and Isabelle:
[tex]\[ d = \sqrt{468} \approx 21.63 \text{ km} \][/tex]
Now, let's check Omyra's calculations and identify her errors:
- Omyra's first step is correct:
[tex]\[ 8^2 + 12^2 = d^2 \][/tex]
- However, her calculation of the squares of the speeds was incorrect:
- [tex]\(8^2 = 64\)[/tex] is correct.
- [tex]\(12^2 = 144\)[/tex] is also correct, but she incorrectly added 24 instead of 144.
- Omyra incorrectly summed the squares as:
[tex]\[ 64 + 24 = 88 \][/tex]
Instead, it should be:
[tex]\[ 64 + 144 = 208 \][/tex]
- Since the square additions were incorrect, her conclusion [tex]\(d^2 = 88\)[/tex] is incorrect.
The correct statements describing her errors are:
- She calculated [tex]\(64 + 24\)[/tex] (which mistakenly assumes [tex]\(12^2 = 24\)[/tex]) instead of [tex]\(64 + 144\)[/tex].
- She concluded [tex]\(88 = d^2\)[/tex] instead of [tex]\(208 = d^2\)[/tex].
To summarize:
1. Omyra correctly identified [tex]\(8^2 + 12^2 = d^2\)[/tex].
2. She miscalculated [tex]\(12^2\)[/tex] leading to adding [tex]\(64 + 24\)[/tex] instead of [tex]\(64 + 144\)[/tex].
3. Her conclusion of [tex]\(88 = d^2\)[/tex] was based on incorrect arithmetic.
Her errors were in the calculation and summation of the squared distances.
1. Determine the distances traveled by Joseph and Isabelle after 1.5 hours:
- Joseph jogged north at 8 kilometers per hour.
[tex]\[ \text{Distance traveled by Joseph} = 8 \text{ km/h} \times 1.5 \text{ h} = 12 \text{ km} \][/tex]
- Isabelle rode her bike west at 12 kilometers per hour.
[tex]\[ \text{Distance traveled by Isabelle} = 12 \text{ km/h} \times 1.5 \text{ h} = 18 \text{ km} \][/tex]
2. Calculate the squared distances:
- The square of the distance traveled by Joseph:
[tex]\[ 12^2 = 144 \][/tex]
- The square of the distance traveled by Isabelle:
[tex]\[ 18^2 = 324 \][/tex]
3. Sum the squares of the distances:
[tex]\[ 144 + 324 = 468 \][/tex]
4. Using the Pythagorean theorem, find the distance [tex]\( d \)[/tex] between Joseph and Isabelle:
[tex]\[ d = \sqrt{468} \approx 21.63 \text{ km} \][/tex]
Now, let's check Omyra's calculations and identify her errors:
- Omyra's first step is correct:
[tex]\[ 8^2 + 12^2 = d^2 \][/tex]
- However, her calculation of the squares of the speeds was incorrect:
- [tex]\(8^2 = 64\)[/tex] is correct.
- [tex]\(12^2 = 144\)[/tex] is also correct, but she incorrectly added 24 instead of 144.
- Omyra incorrectly summed the squares as:
[tex]\[ 64 + 24 = 88 \][/tex]
Instead, it should be:
[tex]\[ 64 + 144 = 208 \][/tex]
- Since the square additions were incorrect, her conclusion [tex]\(d^2 = 88\)[/tex] is incorrect.
The correct statements describing her errors are:
- She calculated [tex]\(64 + 24\)[/tex] (which mistakenly assumes [tex]\(12^2 = 24\)[/tex]) instead of [tex]\(64 + 144\)[/tex].
- She concluded [tex]\(88 = d^2\)[/tex] instead of [tex]\(208 = d^2\)[/tex].
To summarize:
1. Omyra correctly identified [tex]\(8^2 + 12^2 = d^2\)[/tex].
2. She miscalculated [tex]\(12^2\)[/tex] leading to adding [tex]\(64 + 24\)[/tex] instead of [tex]\(64 + 144\)[/tex].
3. Her conclusion of [tex]\(88 = d^2\)[/tex] was based on incorrect arithmetic.
Her errors were in the calculation and summation of the squared distances.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.