Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To expand the expression [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex], we will use the properties of logarithms. Specifically, we will use the quotient rule and the power rule.
### Steps:
1. Quotient Rule:
The logarithm of a quotient is the difference of the logarithms.
[tex]\[ \log \left(\frac{a}{b}\right) = \log a - \log b \][/tex]
Applying this to [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex]:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \log (\sqrt[5]{x}) - \log (y) \][/tex]
2. Power Rule:
The logarithm of a power is the exponent times the logarithm of the base.
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this to [tex]\(\log (\sqrt[5]{x})\)[/tex]:
[tex]\(\sqrt[5]{x}\)[/tex] can be written as [tex]\(x^{1/5}\)[/tex]. Therefore:
[tex]\[ \log (\sqrt[5]{x}) = \log (x^{1/5}) = \frac{1}{5} \log (x) \][/tex]
3. Combine Results:
Substitute this result back into the first expression we got:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \frac{1}{5} \log (x) - \log (y) \][/tex]
### Conclusion:
The expanded form of [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5} \log x - \log y} \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{5} \log x - \log y \][/tex]
### Steps:
1. Quotient Rule:
The logarithm of a quotient is the difference of the logarithms.
[tex]\[ \log \left(\frac{a}{b}\right) = \log a - \log b \][/tex]
Applying this to [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex]:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \log (\sqrt[5]{x}) - \log (y) \][/tex]
2. Power Rule:
The logarithm of a power is the exponent times the logarithm of the base.
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this to [tex]\(\log (\sqrt[5]{x})\)[/tex]:
[tex]\(\sqrt[5]{x}\)[/tex] can be written as [tex]\(x^{1/5}\)[/tex]. Therefore:
[tex]\[ \log (\sqrt[5]{x}) = \log (x^{1/5}) = \frac{1}{5} \log (x) \][/tex]
3. Combine Results:
Substitute this result back into the first expression we got:
[tex]\[ \log \left(\frac{\sqrt[5]{x}}{y}\right) = \frac{1}{5} \log (x) - \log (y) \][/tex]
### Conclusion:
The expanded form of [tex]\(\log \left(\frac{\sqrt[5]{x}}{y}\right)\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5} \log x - \log y} \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{5} \log x - \log y \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.