Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the system of equations using elimination, let's follow a step-by-step approach:
### Given System of Equations:
[tex]\[ \begin{array}{c} 3g + 4h = 24 \\ -g + 2h = 2 \end{array} \][/tex]
### Step 1: Eliminate One Variable
To eliminate the variable [tex]\( g \)[/tex], we will perform some operations on these equations. Let's start by eliminating [tex]\( g \)[/tex] from the second equation.
#### Adjust the Second Equation:
Multiply the entire second equation by 3 so that the coefficients of [tex]\( g \)[/tex] in both equations have the same magnitude but opposite signs:
[tex]\[ -3g + 6h = 6 \][/tex]
The system now becomes:
[tex]\[ \begin{array}{c} 3g + 4h = 24 \\ -3g + 6h = 6 \end{array} \][/tex]
### Step 2: Add the Equations to Eliminate [tex]\( g \)[/tex]
Add the two equations together:
[tex]\[ (3g + 4h) + (-3g + 6h) = 24 + 6 \][/tex]
[tex]\[ 3g - 3g + 4h + 6h = 30 \][/tex]
[tex]\[ 0g + 10h = 30 \][/tex]
So, the resulting equation is:
[tex]\[ 10h = 30 \][/tex]
### Step 3: Solve for [tex]\( h \)[/tex]
Divide both sides by 10:
[tex]\[ h = \frac{30}{10} = 3 \][/tex]
### Step 4: Substitute [tex]\( h \)[/tex] Back into One of the Original Equations
Now, we need to find the value of [tex]\( g \)[/tex]. Substitute [tex]\( h = 3 \)[/tex] into the second original equation [tex]\( -g + 2h = 2 \)[/tex]:
[tex]\[ -g + 2(3) = 2 \][/tex]
[tex]\[ -g + 6 = 2 \][/tex]
Subtract 6 from both sides:
[tex]\[ -g = 2 - 6 \][/tex]
[tex]\[ -g = -4 \][/tex]
Multiply both sides by -1:
[tex]\[ g = 4 \][/tex]
### Step 5: State the Solution
The solution to the system of equations is the ordered pair [tex]\( (g, h) \)[/tex]. Thus, in alphabetical order:
[tex]\[ (g, h) = (4, 3) \][/tex]
The correct answer is:
[tex]\[ (4, 3) \][/tex]
### Given System of Equations:
[tex]\[ \begin{array}{c} 3g + 4h = 24 \\ -g + 2h = 2 \end{array} \][/tex]
### Step 1: Eliminate One Variable
To eliminate the variable [tex]\( g \)[/tex], we will perform some operations on these equations. Let's start by eliminating [tex]\( g \)[/tex] from the second equation.
#### Adjust the Second Equation:
Multiply the entire second equation by 3 so that the coefficients of [tex]\( g \)[/tex] in both equations have the same magnitude but opposite signs:
[tex]\[ -3g + 6h = 6 \][/tex]
The system now becomes:
[tex]\[ \begin{array}{c} 3g + 4h = 24 \\ -3g + 6h = 6 \end{array} \][/tex]
### Step 2: Add the Equations to Eliminate [tex]\( g \)[/tex]
Add the two equations together:
[tex]\[ (3g + 4h) + (-3g + 6h) = 24 + 6 \][/tex]
[tex]\[ 3g - 3g + 4h + 6h = 30 \][/tex]
[tex]\[ 0g + 10h = 30 \][/tex]
So, the resulting equation is:
[tex]\[ 10h = 30 \][/tex]
### Step 3: Solve for [tex]\( h \)[/tex]
Divide both sides by 10:
[tex]\[ h = \frac{30}{10} = 3 \][/tex]
### Step 4: Substitute [tex]\( h \)[/tex] Back into One of the Original Equations
Now, we need to find the value of [tex]\( g \)[/tex]. Substitute [tex]\( h = 3 \)[/tex] into the second original equation [tex]\( -g + 2h = 2 \)[/tex]:
[tex]\[ -g + 2(3) = 2 \][/tex]
[tex]\[ -g + 6 = 2 \][/tex]
Subtract 6 from both sides:
[tex]\[ -g = 2 - 6 \][/tex]
[tex]\[ -g = -4 \][/tex]
Multiply both sides by -1:
[tex]\[ g = 4 \][/tex]
### Step 5: State the Solution
The solution to the system of equations is the ordered pair [tex]\( (g, h) \)[/tex]. Thus, in alphabetical order:
[tex]\[ (g, h) = (4, 3) \][/tex]
The correct answer is:
[tex]\[ (4, 3) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.