Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
We are given a polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex] and asked to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex], where [tex]\(\alpha, \beta, \gamma\)[/tex] are the roots of the polynomial.
First, let's recall Vieta's formulas, which relate the coefficients of the polynomial to sums and products of its roots. For a cubic polynomial of the form [tex]\( f(x) = x^3 + ax^2 + bx + c \)[/tex], the relationships are:
1. [tex]\(\alpha + \beta + \gamma = -\frac{\text{coefficient of } x^2}{\text{leading coefficient}}\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{coefficient of } x}{\text{leading coefficient}}\)[/tex]
3. [tex]\(\alpha\beta\gamma = -\frac{\text{constant term}}{\text{leading coefficient}}\)[/tex]
For our polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex], the leading coefficient (coefficient of [tex]\( x^3 \)[/tex]) is 1.
According to Vieta's formulas:
1. [tex]\(\alpha + \beta + \gamma = -\left(-5\right) = 5\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = 7\)[/tex]
3. [tex]\(\alpha\beta\gamma = -(-15) = 15\)[/tex]
We need to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex].
Notice that:
[tex]\[ (\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1} = \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} \][/tex]
To simplify these fractions, we find a common denominator, which is:
[tex]\[ \alpha \beta \cdot \beta \gamma \cdot \gamma \alpha = (\alpha \beta \gamma)^2 \][/tex]
Now, we rewrite the expression:
[tex]\[ \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} = \frac{\gamma \alpha \beta + \alpha \beta \gamma + \beta \gamma \alpha}{(\alpha \beta \gamma)^2} \][/tex]
Since addition in the numerator is simply the sum of all product pairs of roots, because of symmetry:
[tex]\[ = \frac{3\alpha \beta \gamma}{(\alpha \beta \gamma)^2} = \frac{3 \alpha \beta \gamma}{(\alpha \beta \gamma)^2} \][/tex]
We know from Vieta's formulas that:
[tex]\[ \alpha \beta \gamma = 15 \][/tex]
Substitute this into the expression:
[tex]\[ = \frac{3 \times 15}{(15)^2} = \frac{45}{225} = \frac{1}{5} \][/tex]
Therefore, the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5}} \][/tex]
We are given a polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex] and asked to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex], where [tex]\(\alpha, \beta, \gamma\)[/tex] are the roots of the polynomial.
First, let's recall Vieta's formulas, which relate the coefficients of the polynomial to sums and products of its roots. For a cubic polynomial of the form [tex]\( f(x) = x^3 + ax^2 + bx + c \)[/tex], the relationships are:
1. [tex]\(\alpha + \beta + \gamma = -\frac{\text{coefficient of } x^2}{\text{leading coefficient}}\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{coefficient of } x}{\text{leading coefficient}}\)[/tex]
3. [tex]\(\alpha\beta\gamma = -\frac{\text{constant term}}{\text{leading coefficient}}\)[/tex]
For our polynomial [tex]\( f(x) = x^3 - 5x^2 + 7x - 15 \)[/tex], the leading coefficient (coefficient of [tex]\( x^3 \)[/tex]) is 1.
According to Vieta's formulas:
1. [tex]\(\alpha + \beta + \gamma = -\left(-5\right) = 5\)[/tex]
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = 7\)[/tex]
3. [tex]\(\alpha\beta\gamma = -(-15) = 15\)[/tex]
We need to find the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex].
Notice that:
[tex]\[ (\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1} = \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} \][/tex]
To simplify these fractions, we find a common denominator, which is:
[tex]\[ \alpha \beta \cdot \beta \gamma \cdot \gamma \alpha = (\alpha \beta \gamma)^2 \][/tex]
Now, we rewrite the expression:
[tex]\[ \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} = \frac{\gamma \alpha \beta + \alpha \beta \gamma + \beta \gamma \alpha}{(\alpha \beta \gamma)^2} \][/tex]
Since addition in the numerator is simply the sum of all product pairs of roots, because of symmetry:
[tex]\[ = \frac{3\alpha \beta \gamma}{(\alpha \beta \gamma)^2} = \frac{3 \alpha \beta \gamma}{(\alpha \beta \gamma)^2} \][/tex]
We know from Vieta's formulas that:
[tex]\[ \alpha \beta \gamma = 15 \][/tex]
Substitute this into the expression:
[tex]\[ = \frac{3 \times 15}{(15)^2} = \frac{45}{225} = \frac{1}{5} \][/tex]
Therefore, the value of [tex]\((\alpha \beta)^{-1} + (\beta \gamma)^{-1} + (\gamma \alpha)^{-1}\)[/tex] is:
[tex]\[ \boxed{\frac{1}{5}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.