Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the length of the third side of a triangle when given two sides and the included angle, we use the Law of Cosines. The Law of Cosines formula is:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here, we are given:
- side [tex]\( a = 2 \)[/tex]
- side [tex]\( b = 5 \)[/tex]
- the angle between these sides [tex]\( C = 60^{\circ} \)[/tex]
Step 1: Convert the angle from degrees to radians. We know that [tex]\(60^{\circ}\)[/tex] is equivalent to [tex]\(\frac{\pi}{3}\)[/tex] radians.
Step 2: Apply the Law of Cosines formula. Substitute the values into the formula:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \cos(60^{\circ}) \][/tex]
Step 3: Calculate the cosine of [tex]\( 60^\circ \)[/tex]. We know [tex]\(\cos(60^\circ) = \frac{1}{2} \)[/tex].
Step 4: Substitute [tex]\(\cos(60^\circ)\)[/tex] back into the equation:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
Step 5: Simplify the equation step by step:
[tex]\[ c^2 = 4 + 25 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 = 19 \][/tex]
So,
[tex]\[ c^2 = 19 \][/tex]
Step 6: Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{19} \][/tex]
Thus, the length of the third side is [tex]\(\sqrt{19}\)[/tex].
The correct answer is:
B. [tex]\(\sqrt{19}\)[/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
Here, we are given:
- side [tex]\( a = 2 \)[/tex]
- side [tex]\( b = 5 \)[/tex]
- the angle between these sides [tex]\( C = 60^{\circ} \)[/tex]
Step 1: Convert the angle from degrees to radians. We know that [tex]\(60^{\circ}\)[/tex] is equivalent to [tex]\(\frac{\pi}{3}\)[/tex] radians.
Step 2: Apply the Law of Cosines formula. Substitute the values into the formula:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \cos(60^{\circ}) \][/tex]
Step 3: Calculate the cosine of [tex]\( 60^\circ \)[/tex]. We know [tex]\(\cos(60^\circ) = \frac{1}{2} \)[/tex].
Step 4: Substitute [tex]\(\cos(60^\circ)\)[/tex] back into the equation:
[tex]\[ c^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
Step 5: Simplify the equation step by step:
[tex]\[ c^2 = 4 + 25 - 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 \][/tex]
[tex]\[ c^2 = 4 + 25 - 10 = 19 \][/tex]
So,
[tex]\[ c^2 = 19 \][/tex]
Step 6: Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{19} \][/tex]
Thus, the length of the third side is [tex]\(\sqrt{19}\)[/tex].
The correct answer is:
B. [tex]\(\sqrt{19}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.