Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's break down each part of the question step-by-step using the given sets [tex]\( U \)[/tex], [tex]\( A \)[/tex], and [tex]\( B \)[/tex].
### (i) Verification: Given Sets
We have the universal set [tex]\( U \)[/tex], set [tex]\( A \)[/tex], and set [tex]\( B \)[/tex] defined as:
- [tex]\( U = \{1, 2, 3, \ldots, 9\} \)[/tex]
- [tex]\( A = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( B = \{4, 6, 8\} \)[/tex]
Let's verify the different operations on these sets.
#### a) Union of A and B: [tex]\( A \cup B \)[/tex]
The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are in [tex]\( A \)[/tex], or [tex]\( B \)[/tex], or in both.
[tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \cup \{4, 6, 8\} \)[/tex]
Combining all unique elements from both sets, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \][/tex]
This verifies that the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 4, 6, 7, 8\} \)[/tex].
#### b) Intersection of A and B: [tex]\( A \cap B \)[/tex]
The intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\( A \cap B = \{1, 2, 3, 4, 6, 7, 8\} \cap \{4, 6, 8\} \)[/tex]
Identifying common elements, we get:
[tex]\[ A \cap B = \{4, 6, 8\} \][/tex]
This verifies that the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{4, 6, 8\} \)[/tex].
#### c) Complement of A: [tex]\( A^c \)[/tex]
The complement of set [tex]\( A \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( A \)[/tex].
[tex]\( A^c = U - A = \{1, 2, 3, \ldots, 9\} - \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
Removing all elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ A^c = \{9, 5\} \][/tex]
This verifies that the complement of [tex]\( A \)[/tex] is [tex]\( \{9, 5\} \)[/tex].
#### d) Complement of B: [tex]\( B^c \)[/tex]
The complement of set [tex]\( B \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( B \)[/tex].
[tex]\( B^c = U - B = \{1, 2, 3, \ldots, 9\} - \{4, 6, 8\} \)[/tex]
Removing all elements of [tex]\( B \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ B^c = \{1, 2, 3, 5, 7, 9\} \][/tex]
This verifies that the complement of [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 5, 7, 9\} \)[/tex].
By verifying each operation on the sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] with respect to the universal set [tex]\( U \)[/tex], we can confirm that:
- [tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( A \cap B = \{4, 6, 8\} \)[/tex]
- [tex]\( A^c = \{9, 5\} \)[/tex]
- [tex]\( B^c = \{1, 2, 3, 5, 7, 9\} \)[/tex]
### (i) Verification: Given Sets
We have the universal set [tex]\( U \)[/tex], set [tex]\( A \)[/tex], and set [tex]\( B \)[/tex] defined as:
- [tex]\( U = \{1, 2, 3, \ldots, 9\} \)[/tex]
- [tex]\( A = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( B = \{4, 6, 8\} \)[/tex]
Let's verify the different operations on these sets.
#### a) Union of A and B: [tex]\( A \cup B \)[/tex]
The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are in [tex]\( A \)[/tex], or [tex]\( B \)[/tex], or in both.
[tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \cup \{4, 6, 8\} \)[/tex]
Combining all unique elements from both sets, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \][/tex]
This verifies that the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 4, 6, 7, 8\} \)[/tex].
#### b) Intersection of A and B: [tex]\( A \cap B \)[/tex]
The intersection of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is defined as the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\( A \cap B = \{1, 2, 3, 4, 6, 7, 8\} \cap \{4, 6, 8\} \)[/tex]
Identifying common elements, we get:
[tex]\[ A \cap B = \{4, 6, 8\} \][/tex]
This verifies that the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{4, 6, 8\} \)[/tex].
#### c) Complement of A: [tex]\( A^c \)[/tex]
The complement of set [tex]\( A \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( A \)[/tex].
[tex]\( A^c = U - A = \{1, 2, 3, \ldots, 9\} - \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
Removing all elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ A^c = \{9, 5\} \][/tex]
This verifies that the complement of [tex]\( A \)[/tex] is [tex]\( \{9, 5\} \)[/tex].
#### d) Complement of B: [tex]\( B^c \)[/tex]
The complement of set [tex]\( B \)[/tex] in the universal set [tex]\( U \)[/tex] is defined as the set of elements that are in [tex]\( U \)[/tex] but not in [tex]\( B \)[/tex].
[tex]\( B^c = U - B = \{1, 2, 3, \ldots, 9\} - \{4, 6, 8\} \)[/tex]
Removing all elements of [tex]\( B \)[/tex] from [tex]\( U \)[/tex], we are left with:
[tex]\[ B^c = \{1, 2, 3, 5, 7, 9\} \][/tex]
This verifies that the complement of [tex]\( B \)[/tex] is [tex]\( \{1, 2, 3, 5, 7, 9\} \)[/tex].
By verifying each operation on the sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] with respect to the universal set [tex]\( U \)[/tex], we can confirm that:
- [tex]\( A \cup B = \{1, 2, 3, 4, 6, 7, 8\} \)[/tex]
- [tex]\( A \cap B = \{4, 6, 8\} \)[/tex]
- [tex]\( A^c = \{9, 5\} \)[/tex]
- [tex]\( B^c = \{1, 2, 3, 5, 7, 9\} \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.