Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's take a detailed step-by-step approach to solve this problem:
1. Given Information:
- [tex]\(\sin \theta = \frac{1}{2}\)[/tex]
- The equation [tex]\(\tan \theta = \frac{s^2}{49}\)[/tex]
2. Find [tex]\(\cos \theta\)[/tex]:
We know the identity involving sine and cosine:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Substituting the given value of [tex]\(\sin \theta = \frac{1}{2}\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 + \cos^2 \theta = 1 \][/tex]
[tex]\[ \frac{1}{4} + \cos^2 \theta = 1 \][/tex]
[tex]\[ \cos^2 \theta = 1 - \frac{1}{4} \][/tex]
[tex]\[ \cos^2 \theta = \frac{3}{4} \][/tex]
Taking the positive square root (since [tex]\(\cos\)[/tex] is positive in the first and fourth quadrants where sine is also positive):
[tex]\[ \cos \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \approx 0.866 \][/tex]
3. Find [tex]\(\tan \theta\)[/tex]:
We use the identity for tangent:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
Substituting the values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \approx 0.577 \][/tex]
4. Substitute [tex]\(\tan \theta\)[/tex] into the equation to find [tex]\(s\)[/tex]:
The given equation is:
[tex]\[ \tan \theta = \frac{s^2}{49} \][/tex]
Substituting the value of [tex]\(\tan \theta\)[/tex]:
[tex]\[ 0.577 \approx \frac{s^2}{49} \][/tex]
Solving for [tex]\(s^2\)[/tex]:
[tex]\[ s^2 = 0.577 \times 49 = 28.3 \][/tex]
Then, taking the square root of both sides gives:
[tex]\[ s = \sqrt{28.3} \approx 5.318 \][/tex]
5. Final Approximate Value:
The speed [tex]\(s\)[/tex] of the car in feet per second is approximately:
[tex]\[ s \approx 5.3 \][/tex]
So, the correct answer from the given options is:
[tex]\[ \boxed{5.3} \][/tex]
1. Given Information:
- [tex]\(\sin \theta = \frac{1}{2}\)[/tex]
- The equation [tex]\(\tan \theta = \frac{s^2}{49}\)[/tex]
2. Find [tex]\(\cos \theta\)[/tex]:
We know the identity involving sine and cosine:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Substituting the given value of [tex]\(\sin \theta = \frac{1}{2}\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 + \cos^2 \theta = 1 \][/tex]
[tex]\[ \frac{1}{4} + \cos^2 \theta = 1 \][/tex]
[tex]\[ \cos^2 \theta = 1 - \frac{1}{4} \][/tex]
[tex]\[ \cos^2 \theta = \frac{3}{4} \][/tex]
Taking the positive square root (since [tex]\(\cos\)[/tex] is positive in the first and fourth quadrants where sine is also positive):
[tex]\[ \cos \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \approx 0.866 \][/tex]
3. Find [tex]\(\tan \theta\)[/tex]:
We use the identity for tangent:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
Substituting the values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \approx 0.577 \][/tex]
4. Substitute [tex]\(\tan \theta\)[/tex] into the equation to find [tex]\(s\)[/tex]:
The given equation is:
[tex]\[ \tan \theta = \frac{s^2}{49} \][/tex]
Substituting the value of [tex]\(\tan \theta\)[/tex]:
[tex]\[ 0.577 \approx \frac{s^2}{49} \][/tex]
Solving for [tex]\(s^2\)[/tex]:
[tex]\[ s^2 = 0.577 \times 49 = 28.3 \][/tex]
Then, taking the square root of both sides gives:
[tex]\[ s = \sqrt{28.3} \approx 5.318 \][/tex]
5. Final Approximate Value:
The speed [tex]\(s\)[/tex] of the car in feet per second is approximately:
[tex]\[ s \approx 5.3 \][/tex]
So, the correct answer from the given options is:
[tex]\[ \boxed{5.3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.