Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of the cosine of an angle measuring [tex]\(\frac{\pi}{2}\)[/tex] radians, let's consider the position of this angle in the unit circle.
1. Understanding the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin [tex]\((0,0)\)[/tex] on the Cartesian plane.
- Any angle in standard position is measured from the positive [tex]\(x\)[/tex]-axis, rotating counterclockwise.
2. Position of [tex]\(\frac{\pi}{2}\)[/tex] Radians:
- An angle of [tex]\(\frac{\pi}{2}\)[/tex] radians corresponds to a 90-degree angle.
- When you measure 90 degrees (or [tex]\(\frac{\pi}{2}\)[/tex] radians) counterclockwise from the positive [tex]\(x\)[/tex]-axis, you land on the positive [tex]\(y\)[/tex]-axis.
3. Coordinates of the Point on the Unit Circle:
- The coordinates of the point where [tex]\(\frac{\pi}{2}\)[/tex] radians intersects the unit circle are [tex]\((0, 1)\)[/tex].
4. Cosine Function and Coordinates:
- The cosine of an angle in the unit circle is defined as the [tex]\(x\)[/tex]-coordinate of the point on the unit circle corresponding to that angle.
5. Evaluating Cosine at the Angle:
- For the angle [tex]\(\frac{\pi}{2}\)[/tex] radians, the point on the unit circle is [tex]\((0, 1)\)[/tex].
- Therefore, the [tex]\(x\)[/tex]-coordinate at this point is 0.
6. Conclusion:
- The value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
Thus, the value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
1. Understanding the Unit Circle:
- The unit circle is a circle with a radius of 1 centered at the origin [tex]\((0,0)\)[/tex] on the Cartesian plane.
- Any angle in standard position is measured from the positive [tex]\(x\)[/tex]-axis, rotating counterclockwise.
2. Position of [tex]\(\frac{\pi}{2}\)[/tex] Radians:
- An angle of [tex]\(\frac{\pi}{2}\)[/tex] radians corresponds to a 90-degree angle.
- When you measure 90 degrees (or [tex]\(\frac{\pi}{2}\)[/tex] radians) counterclockwise from the positive [tex]\(x\)[/tex]-axis, you land on the positive [tex]\(y\)[/tex]-axis.
3. Coordinates of the Point on the Unit Circle:
- The coordinates of the point where [tex]\(\frac{\pi}{2}\)[/tex] radians intersects the unit circle are [tex]\((0, 1)\)[/tex].
4. Cosine Function and Coordinates:
- The cosine of an angle in the unit circle is defined as the [tex]\(x\)[/tex]-coordinate of the point on the unit circle corresponding to that angle.
5. Evaluating Cosine at the Angle:
- For the angle [tex]\(\frac{\pi}{2}\)[/tex] radians, the point on the unit circle is [tex]\((0, 1)\)[/tex].
- Therefore, the [tex]\(x\)[/tex]-coordinate at this point is 0.
6. Conclusion:
- The value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
Thus, the value of the cosine of the angle [tex]\(\frac{\pi}{2}\)[/tex] radians is [tex]\(0\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.