Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's find the zeroes of each quadratic polynomial and verify the relationship between the zeroes and the coefficients.
### (i) [tex]\( x^2 - 2x - 8 \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( x^2 - 2x - 8 = 0 \)[/tex]. To find the zeroes, we solve:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Solving, we get:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm 6}{2} \][/tex]
So, the zeroes are:
[tex]\[ x = \frac{2 + 6}{2} = 4 \quad \text{and} \quad x = \frac{2 - 6}{2} = -2 \][/tex]
Thus, the zeroes are [tex]\( x = 4 \)[/tex] and [tex]\( x = -2 \)[/tex].
2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) of [tex]\( ax^2 + bx + c = 0 \)[/tex] should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-2}{1} = 2 \][/tex]
Here, the sum is [tex]\( 4 + (-2) = 2 \)[/tex], so it matches.
- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-8}{1} = -8 \][/tex]
The product is [tex]\( 4 \times (-2) = -8 \)[/tex], so it matches.
So, for [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\( 4 \)[/tex] and [tex]\( -2 \)[/tex]
- Sum of zeroes: [tex]\( 2 \)[/tex]
- Product of zeroes: [tex]\( -8 \)[/tex]
### (ii) [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( 4s^2r^4 + 4s + 16 = 0 \)[/tex].
Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 4r^4 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 16 \)[/tex].
Solving, we get:
[tex]\[ s = \frac{-4 \pm \sqrt{16 - 256r^4}}{8r^4} = \frac{-4 \pm \sqrt{4(1 - 16r^4)}}{8r^4} = \frac{-4 \pm 2\sqrt{1 - 16r^4}}{8r^4} = \frac{-2 \pm \sqrt{1 - 16r^4}}{4r^4} \][/tex]
So, the zeroes are:
[tex]\[ s = \frac{-2 + \sqrt{1 - 16r^4}}{4r^4} \quad \text{and} \quad s = \frac{-2 - \sqrt{1 - 16r^4}}{4r^4} \][/tex]
Thus, the zeroes are:
[tex]\[ \left( \frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4} \right) \][/tex]
### (iii) [tex]\( 6x^2 - 3 - 7x \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( 6x^2 - 3 - 7x = 0 \)[/tex]. Rearranging it to standard form, we get [tex]\( 6x^2 - 7x - 3 = 0 \)[/tex].
Here, [tex]\( a = 6 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = -3 \)[/tex].
Solving, we get:
[tex]\[ x = \frac{7 \pm \sqrt{49 + 72}}{12} = \frac{7 \pm \sqrt{121}}{12} = \frac{7 \pm 11}{12} \][/tex]
So, the zeroes are:
[tex]\[ x = \frac{7 + 11}{12} = \frac{18}{12} = \frac{3}{2} \quad \text{and} \quad x = \frac{7 - 11}{12} = \frac{-4}{12} = -\frac{1}{3} \][/tex]
Thus, the zeroes are [tex]\( x = \frac{3}{2} \)[/tex] and [tex]\( x = -\frac{1}{3} \)[/tex].
2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-7}{6} = \frac{7}{6} \][/tex]
Here, the sum is [tex]\( \frac{3}{2} + \left(-\frac{1}{3}\right) = \frac{9}{6} - \frac{2}{6} = \frac{7}{6} \)[/tex], so it matches.
- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-3}{6} = -\frac{1}{2} \][/tex]
The product is [tex]\( \left(\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) = -\frac{3}{6} = -\frac{1}{2} \)[/tex], so it matches.
So, for [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\( \frac{3}{2} \)[/tex] and [tex]\( -\frac{1}{3} \)[/tex]
- Sum of zeroes: [tex]\( \frac{7}{6} \)[/tex]
- Product of zeroes: [tex]\( -\frac{1}{2} \)[/tex]
In summary:
1. For [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\(4\)[/tex] and [tex]\(-2\)[/tex]
- Sum of zeroes: [tex]\(2\)[/tex]
- Product of zeroes: [tex]\(-8\)[/tex]
2. For [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]:
- Zeroes: [tex]\(\left(\frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4}\right)\)[/tex]
3. For [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\(\frac{3}{2}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex]
- Sum of zeroes: [tex]\(\frac{7}{6}\)[/tex]
- Product of zeroes: [tex]\(-\frac{1}{2}\)[/tex]
### (i) [tex]\( x^2 - 2x - 8 \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( x^2 - 2x - 8 = 0 \)[/tex]. To find the zeroes, we solve:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -8 \)[/tex].
Solving, we get:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm 6}{2} \][/tex]
So, the zeroes are:
[tex]\[ x = \frac{2 + 6}{2} = 4 \quad \text{and} \quad x = \frac{2 - 6}{2} = -2 \][/tex]
Thus, the zeroes are [tex]\( x = 4 \)[/tex] and [tex]\( x = -2 \)[/tex].
2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) of [tex]\( ax^2 + bx + c = 0 \)[/tex] should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-2}{1} = 2 \][/tex]
Here, the sum is [tex]\( 4 + (-2) = 2 \)[/tex], so it matches.
- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-8}{1} = -8 \][/tex]
The product is [tex]\( 4 \times (-2) = -8 \)[/tex], so it matches.
So, for [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\( 4 \)[/tex] and [tex]\( -2 \)[/tex]
- Sum of zeroes: [tex]\( 2 \)[/tex]
- Product of zeroes: [tex]\( -8 \)[/tex]
### (ii) [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( 4s^2r^4 + 4s + 16 = 0 \)[/tex].
Solving for [tex]\( s \)[/tex]:
[tex]\[ s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 4r^4 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 16 \)[/tex].
Solving, we get:
[tex]\[ s = \frac{-4 \pm \sqrt{16 - 256r^4}}{8r^4} = \frac{-4 \pm \sqrt{4(1 - 16r^4)}}{8r^4} = \frac{-4 \pm 2\sqrt{1 - 16r^4}}{8r^4} = \frac{-2 \pm \sqrt{1 - 16r^4}}{4r^4} \][/tex]
So, the zeroes are:
[tex]\[ s = \frac{-2 + \sqrt{1 - 16r^4}}{4r^4} \quad \text{and} \quad s = \frac{-2 - \sqrt{1 - 16r^4}}{4r^4} \][/tex]
Thus, the zeroes are:
[tex]\[ \left( \frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4} \right) \][/tex]
### (iii) [tex]\( 6x^2 - 3 - 7x \)[/tex]
1. Find the zeroes:
The quadratic equation is [tex]\( 6x^2 - 3 - 7x = 0 \)[/tex]. Rearranging it to standard form, we get [tex]\( 6x^2 - 7x - 3 = 0 \)[/tex].
Here, [tex]\( a = 6 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = -3 \)[/tex].
Solving, we get:
[tex]\[ x = \frac{7 \pm \sqrt{49 + 72}}{12} = \frac{7 \pm \sqrt{121}}{12} = \frac{7 \pm 11}{12} \][/tex]
So, the zeroes are:
[tex]\[ x = \frac{7 + 11}{12} = \frac{18}{12} = \frac{3}{2} \quad \text{and} \quad x = \frac{7 - 11}{12} = \frac{-4}{12} = -\frac{1}{3} \][/tex]
Thus, the zeroes are [tex]\( x = \frac{3}{2} \)[/tex] and [tex]\( x = -\frac{1}{3} \)[/tex].
2. Verify the relationship between the zeroes and coefficients:
- The sum of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( -\frac{b}{a} \)[/tex]:
[tex]\[ \alpha + \beta = - \frac{b}{a} = -\frac{-7}{6} = \frac{7}{6} \][/tex]
Here, the sum is [tex]\( \frac{3}{2} + \left(-\frac{1}{3}\right) = \frac{9}{6} - \frac{2}{6} = \frac{7}{6} \)[/tex], so it matches.
- The product of the zeroes ([tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]) should be [tex]\( \frac{c}{a} \)[/tex]:
[tex]\[ \alpha \beta = \frac{c}{a} = \frac{-3}{6} = -\frac{1}{2} \][/tex]
The product is [tex]\( \left(\frac{3}{2}\right) \times \left(-\frac{1}{3}\right) = -\frac{3}{6} = -\frac{1}{2} \)[/tex], so it matches.
So, for [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\( \frac{3}{2} \)[/tex] and [tex]\( -\frac{1}{3} \)[/tex]
- Sum of zeroes: [tex]\( \frac{7}{6} \)[/tex]
- Product of zeroes: [tex]\( -\frac{1}{2} \)[/tex]
In summary:
1. For [tex]\( x^2 - 2x - 8 \)[/tex]:
- Zeroes: [tex]\(4\)[/tex] and [tex]\(-2\)[/tex]
- Sum of zeroes: [tex]\(2\)[/tex]
- Product of zeroes: [tex]\(-8\)[/tex]
2. For [tex]\( 4s^2r^4 + 4s + 16 \)[/tex]:
- Zeroes: [tex]\(\left(\frac{-\sqrt{1 - 16r^4} - 1}{2r^4}, \frac{\sqrt{1 - 16r^4} - 1}{2r^4}\right)\)[/tex]
3. For [tex]\( 6x^2 - 3 - 7x \)[/tex]:
- Zeroes: [tex]\(\frac{3}{2}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex]
- Sum of zeroes: [tex]\(\frac{7}{6}\)[/tex]
- Product of zeroes: [tex]\(-\frac{1}{2}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.