Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium, we need to use the Gibbs free energy equation at equilibrium. The Gibbs free energy [tex]\( G \)[/tex] is given by:
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.